The European Commission's science and knowledge service

Water and agriculture

"The 2016 EU Agricultural Outlook Conference"

Brussels, 6 December 2016

The role of the Joint Research Centre

Irrigation can make a great difference for farmers, e.g. Andalusia

Main indicators for selected commodities between irrigated and rainfed options (regional average = 100) *CAPRI-Water*

Groundwater level evolution in some exploited aquifers in South-East Spain

Average Water Exploitation Index (WEI+) 1990-2014

Source JRC, 2016

Average Water Exploitation Index (WEI+) under 2 degree global temperature increase

2016

Improving on-farm water management

Management strategies to increase crop water productivity must be tailored to local contexts (maximize yield per unit of water as well as per unit of land)

- Improved irrigation techniques: choice of technology, irrigation scheduling, deficit irrigation, use of sensors, etc.
- Use of alternative water sources such as wastewater, brackish water, increase rainwater harvesting
- Development of drought resistant crops: switch to less water consumptive crops that still deliver good economic return
- Improved land and soil management: cropping, mulching, tillage practices.
- •

Identifying efficient water reduction strategies

Showing changes if all irrigation is transformed to **drip irrigation**, increasing water efficiency from 83% to 93%

Irrigation water requirement for maize with no difference in yield

Source JRC

Water reuse in agricultural irrigation and aquifer recharge

Europe at present:

- Reuse of 1 000 000 000 m³ of treated wastewater annually
- This is only 2.4% of the treated wastewater effluent
- Less than 0.5% of annual EU freshwater withdrawal
- Potential is estimated to be at least 6 times higher
- Cyprus and Malta have already made significant progress

EU Circular Economy package

The Commission will take a series of actions to facilitate water reuse; this will include a legislative proposal on minimum requirements for reused water, e.g. for irrigation and groundwater recharge: 2017

- 1. Food crops consumed raw
- 2. Processed and other food crops3. Non-food crops

Nitrates in European groundwaters

Average nitrates concentrations at NUTS3 level

Source JRC, 2016

Scenarios for nitrogen sources in 2020

Diffuse emissions of nitrogen to waters in 1000 tons/year

Antimicrobial resistances in agriculture

- Potential human health risks posed by the agricultural release of antimicrobial agents into the environment
- Need to develop risk
 assessments of antimicrobial
 resistance in agriculture
 linked mainly to the use of
 veterinary medicines

Source: Thanner et al., 2016

Concluding observations

- The Water Energy Food Nexus both at EU and global level requires a cross-policy approach
- Sustainable agriculture across the EU will need us to work towards targeted strategies for e.g. smart irrigation, water-reuse and nutrient management
- Improved fresh water management will be a prerequisite for stabilising food security and economic development in Africa and EU neighbouring countries

Joint Research Centre

