

66 I am proud to be part of this farm revolution

J. G. Farmer in the South of France

President of the Durance Irrigation Association (200,000ha)

¿Why is it a revolution?

Digital Farming + Space Technology gives access to variability...

"give each plant exactly what it needs & when, not more - not less"

→ Optimize resources & benefits

Copernicus for Sustainable Agriculture

Agriculture 4.0: all about variability (in space & time)

"knowing variability -> managing variability"

Copernicus helps to know - FATIMA shows how

FATIMA: Optimizing nutrient & water management in intensive agriculture

Copernicus for Sustainable Agriculture

Agriculture 4.0: all about variability (in space & time)

"knowing variability -> managing variability"

Copernicus helps to know - FATIMA shows how

FATIMA: Optimizing nutrient & water management in intensive agriculture

FATIMA outcomes:

Practical tools, endorsed by users across Europe, within reach of all:

Service operational, large-scale, affordable for farmers & commercially viable (demonstrated SMEs)

Supported /backed up by 8MEUR of rigorous science in multi-actor project 2015-2018

Anna Osann & Alfonso Calera (Universidad de Castilla-La Mancha) coordinators Research and Innovation, Action (grant 633945)

¿How is it done?

Management zones &

Spatialized N- balance & water balance

EO-generated map of potential

requirements

Introduced into variablerate spreader intelligence

Tractor in field spreading differential N rate

Variable Rate vs Simple Rate

Spatially Distributed Soil Water Balance based on remote sensing

Farmer pre-FATIMA

Decision based on

- FAO tables (water)
- national tables (nutrientes)
- consultants or Extension
 Services (in some cases)
- their own experience
- ..

In all cases: homogeneous application

Farmer pre-FATIMA

Decision based on

- FAO tables (water)
- national tables (nutrientes)
- consultants or Extension
 Services (in some cases)
- their own experience
- ...

In all cases: homogeneous application

EO-enabled innovation

FATIMA

key element:

Variability of crop requirements (space, time)

"know yari Liney

manage variability"
"precise diagnosis (of plant nutrient/water status)

+ precise prognosis" (of plant nutrient/water requirement

Farmer pre-FATIMA

Decision based on

- FAO tables (water)
- national tables (nutrientes)
- consultants or Extension Services (in some cases)
- their own experience

In all cases: homogeneous application

EO-enabled innovation

FATIMA

key element:

Variability of crop requirements (space, time)

"know variability

manage variability" "precise diagnosis (of plant nutrient/water status)

> + precise prognosis" (of plant nutrient/water requirements)

FATIMA provides

- Info (maps, stats?, assessments, roadmaps, guidelines)
- Calculators
- Tools (for info visualization & analysis)
- Services
- (multi-actor) community
- **Enabling environment**

Farmer pre-FATIMA

Decision based on

- FAO tables (water)
- national tables (nutrientes)
- consultants or Extension Services (in some cases)
- their own experience

In all cases: homogeneous application

EO-enabled innovation

FATIMA

key element:

Variability of crop requirements (space, time)

"know variability

manage variability" "precise diagnosis (of plant nutrient/water status)

> + precise prognosis" (of plant nutrient/water requirements)

FATIMA provides

- Info (maps, stats?, assessments, roadmaps, guidelines)
- Calculators
- Tools (for info visualization & analysis)
- Services
- (multi-actor) community
- **Enabling environment**

AFTER Farmer with

FATIMA

Decision adapted to

- local spatial variability
- at precise moment in growing cycle

No under-input

Reduce

- Cost
- Amount (nutrients, water)
- losses (leaching, emissions)

Maximize

- Yield quantity&quality
- benefits

Strengthen prosperous farming communities

- & give back to environment
- & society

Climate change relevant outcomes

*Tools for adaptive management

*Tools for reduction of

water use → energy use fertilizer use → energy use (WEF)

emissions

Level of reduction... ...depends on starting point

exGR 38% (fertilizer / energy / emissions)

exES 5-10% (fertilizer / energy / emissions)

general 5-20% (water henergy)

Integration of different technologies into a practical variable-rate delivery system of high resolution

VRA decreased N inputs by 38% without any losses of grain yield in replicated wheat strips.

WARNING

Digi-Space-Tech alone doesn't do the job

needs to be used / adopted / taken up:

→ co-creation process

→ multi-actor community

- → business (intermediaries)

Take-home message

Digital Farming + EO Space Technology opens new dimension in agriculture:

manage variability

Needs multi-actor user community to convert this into Climate Change-relevant impacts:

Reduce water, fertilizer, energy use; Reduce emissions; Adaptive management

FATIMA MULTI-ACTOR **LOCAL CHAMPIONS** ,.....

