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FOREWORD

This publication is one of the outcomes of the Growth Project GRD1-1999-10914
“EUPIGCLASS”. This project aimed for standardisation of pig carcass classifi-
cation in the EU through improved statistical procedures and new technological
developments. It was co-ordinated by the Danish Meat Research Institute.

The project was divided into three workpackages. The objective of the workpackage
II was to solve the main statistical problems encountered in the application of
the EC regulations for pig classification, to anticipate future problems and to
form a basis to update the regulations. This statistical handbook was therefore
written to provide useful and detailed documentation to people responsible for the
national assessment of pig classification methods, both in the present and future
EU countries.

At the moment, this outcome of the EUPIGCLASS project has to be considered
as a working document that could be used in discussions about changes in the
EU regulations for pig classification. Depending these changes (probably decided
upon in 2005), an update could be necessary before officially replacing the present
version of the “Statistical Handbook for assessing pig classification methods” that
was distributed at a EU Pigmeat Management Committee meeting in 2000.

This new version of the handbook offers a considerable improvement over the 2000
version. The main proposal for an adaptation of the EC/2967/85 regulation is
to replace the present error criterion “RMSE” by the “RMSEP”, that estimates
the error of prediction and can be evaluated when Partial Least Squares (PLS) is
used. The text is enhanced with many details and examples that will be of use to
research workers and/or statisticians involved in pig classification.
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Introduction

By Gérard Daumas

The main objective of this document is to help people dealing with pig clas-
sification methods. The past and future extensions of the European Union make
harmonisation even more necessary. Previous research concerning the harmonisa-
tion of methods for classification of pig carcasses in the Community has achieved
to:

• the adoption of a simplified dissection method and therefore a new definition
of the lean meat percentage;

• the introduction of a sophisticated statistical method, called double regres-
sion, as the “new standard”;

• amendments of regulations.

The present regulations are not easily understandable. It is therefore necessary
for the new scientists dealing with this matter to obtain some interpretations.

In the past member states have chosen different ways for sampling and for
parameters estimation. Anyway, two issues have appeared: the reduction of ex-
perimental costs and the management of large sets of highly correlated variables.
These difficulties have been solved by more complicated statistical methods but
all deriving from classical linear regression which was the initial method in the
EC regulation.

To cut the cost of one experimental trial, “double regression” has been first
introduced in pig classification by Engel& Walstra (1991). To reduce the costs of
testing different instruments Daumas & Dhorne (1997) have introduced “regres-
sion with surrogate predictors”. These methods fulfill the present EU require-
ments and estimation of accuracy is available.

In parallel the Danes have first introduced PCR (Principal Component Re-
gression) to test the Danish robot Classification Centre (10-20 variables) and then
PLS (Partial Least Squares) to test the Danish robot Autofom (more than 100
variables). These methods are not explicitly authorized by the regulations as the
compulsory accuracy criteria is not available. It is therefore impossible to check
wether the EU requirements are fulfilled or not.
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Introduction

A short discussion in the Pigmeat Management Committee about the trials
reports generally do not permit to judge such unusual and complicated methods
applied in the scope of classification methods. It seems therefore useful to de-
scribe in detail the new statistical methods used and to show how to check the
constraints of the regulations.

The first official version (draft 3.1) of this handbook has been distributed on
February 2000 to the member states delegates at a meeting of the Pigmeat Man-
agement Committee. Contributions came from statisticians or meat scientists
who are national expert for pig classification.

The European research project (EUPIGCLASS) about standardisation of pig
classification methods, which involves all the contributors of the first version of
the handbook, gives the means for a considerable improvement of the former
version. Orienting more towards users, achieving a large consensus, increasing
harmonisation between sections, going further into details and illustrating with
examples are the main ideas followed for writing up this new version. Neverthe-
less, a central issue was how to estimate accuracy in PLS and how to harmonise
the calculation of this criteria in all the statistical methods.

At the same time, this project was an opportunity to make progress on old
problems, sometimes discussed but never resolved, like for instance “representa-
tive sample” and “outliers”.

This new version of the handbook is an outcome of EUPIGCLASS. It contains
in particular some recommendations for changing the EU regulations. As the
status of the handbook is a kind of complement to the EU regulations it means
that an update will probably be necessary after having taken decisions in Brussels
concerning the amendments to the regulations. In the case the discussions late
a long time a first update based on the present EU regulations might be useful
during the transitional period.

Then, at medium term other updates will depend on the progress in research
and technologies.

Basis for classification

A brief history

Pig classification is based on an objective estimation of the lean meat content of
the carcass. As this criteria is destructive and very expensive to obtain, it has
to be predicted on slaughterline. The EC regulations contain some requirements
on how to predict the reference. In order to ensure that the assessment results
are comparable, presentation (carcass dressing), weight and lean meat content
of the carcass need to be accurately defined. These criteria were defined by the
following two regulations :

• Council Regulation (EEC) Nr 3320/84 of 13 November 1984 determining
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Introduction

the Community scale for classification of pig carcasses;

• Commission Regulation (EEC) Nr 2967/85 of 24 October 1985 laying down
detailed rules for the application of the Community scale for classification
of pig carcasses.

These criteria have evolved leading to amendments of the regulations. Firstly,
lean meat content was derived from dissection of all striated muscle tissue from
the carcass as far as possible by knife. The carcass was defined by the body
of a slaughtered pig, bled and eviscerated, whole or divided down the mid-line,
without tongue, bristles, hooves and genital organs. As some other parts were
removed on the slaughterlines of some Member States, the carcass was later
defined (Commission Regulation 3513/93 of 14 December 1993) also without
flare fat, kidneys and diaphragm.

However, full dissection, developed by the Institut für Fleischerzeugung und
Vermarktung (in Kulmbach, Germany) and called “the Kulmbach reference me-
thod”, is laborious and very time consuming (10 to 12 hours per half carcass and
person). In practice, several Member States used a national dissection method
instead of the Kulmbach reference method, which was a source of biases.

In order to assess the extent of biases and to look for a more simplified dis-
section method an EC wide trial was conducted in 1990/1991. The results of
this trial were reported by Cook and Yates (1992). In this trial, a simplified
dissection method based on the dissection of four main parts (ham, loin, shoul-
der and belly) was tested. Following discussions slight adaptations of the tested
method were introduced. After large discussions about how to calculate the new
lean meat content from the data of the new EU dissection method, a compromise
was found on the definition of this new criterion. The new lean meat content
and dissection method are briefly described by Commission Regulation (EEC)
Nr 3127/94 of 20 December 1994 (amending 2967/85) and described in detail by
Walstra and Merkus (1996). Though these new rules were immediately enforced,
4 years later, in 1998, only 5 Member States had implemented them in their
slaughterhouses (Daumas and Dhorne, 1998). This very long transitional period,
still not ended in 2003, results in new distorsions between Member States.

One reason for delaying the application of regulations could be the high cost
of a dissection trial. Though dissection time was halved, the new EU dissection
method is still time consuming (4-5 hours per half carcass and person).

Sources of errors

The present way of calculating the lean meat percentage is well documented
(Walstra & Merkus, 1996). The formula involves both joints and tissues weights.
The sources of errors come from the carcass dressing, the cutting, the dissection
and the weighting:

13



Introduction

• Definition of the carcass

Because of the high cost of dissection it was decided to dissect only one side
(the left side). But in practice both sides are never identical, especially for
splitting difficulties. A specific difficulty concerns the head, which is not
split on the slaughterlines in some countries. In this case the head should
be split to remove the brain. But this split generally provokes a larger
error than dividing by 2 the head weight and then subtracting an inclusive
amount for a half brain (for instance 50 g).

The carcass weight used as the denominator of the lean meat percentage is
defined as the sum of all the joints regardless if they have to be dissected.
This sum includes 12 joints.

• Jointing procedure

Jointing of the carcass originates from the German DLG-method (Scheper
and Scholz, 1985). Extraction of the 4 main joints (ham, loin, shoulder and
belly) is a potential source of distorsions because of the lack of very precise
anatomical markers. Separation of all 4 joints is more or less problematic,
but removing the shoulder is the main difficulty.

• Dissection procedure

Only the 4 main joints are dissected. The dissection involves a complete
tissue separation of each joint into muscle, bone and fat. Fat is divided
into subcutaneous fat (including skin) and intermuscular fat. Remnants,
such as glands, blood vessels and connective tissue loosely adhering to fat,
are considered as intermuscular fat. Tendons and fasciae are not separated
from the muscles.

Some small difficulties concern:

→ designation of blood-soaked tissue to muscle or fat,

→ differentiation for some small parts between intermuscular fat and con-
nective tissue (therefore weighed as muscle),

→ delimitation in some areas between subcutaneous fat and intermuscu-
lar fat (but without consequence for lean meat percentage).

• Weighting

The present definition of muscle weight includes dissection and evaporation
losses. These losses are highly dependent on chilling conditions, tempera-
ture, speed and quality of dissection. Moreover in some cases carcasses are
not dissected the day following slaughtering.
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At present, the specification only concerns the weighing accuracy. All
weights should be recorded at least to the nearest 10 g or to the nearest 5
or 1 g, if possible.

The errors on the reference have been studied in WP1. Splitting and operator
effect on jointing seem to be the most important.

Evolutions in the definition of the lean meat content

The lean meat percentage, hereafter denoted LMP, has always been defined as a
ratio between a muscle weight (MUS) and a joints weight (JOINTS), expressed
in %: Y = 100 x C x MUS / JOINTS

When the full Kulmbach dissection was used all the joints were dissected. So,
both MUS and JOINTS concerned the whole left side (C = 1).

When a simplified dissection was introduced, MUS refers to the 4 dissected
joints while JOINTS still refers to the whole left. The nature of the ratio has
therefore changed because numerator and denominator do not refer to the same
piece of meat. Simultaneously, a scaling factor (”cosmetic”) was introduced in
order to maintain the same mean in the EU (C = 1.3). This is the present
definition in 2003.

EUPIGCLASS group recommends now to change the definition towards the
% of muscle in the 4 main joints which means that numerator and denominator
again will refer to the same piece of meat, but sticking with a simplified dissection.
Then, a new scaling factor will be a point of discussion. A new value could be
around: C = 0.9 .

These changes on the response variable have an influence on the levels of the
residual variance and the prediction error.

Classification instruments

Equipments and variables

When Denmark, Ireland and the United Kingdom joined the Community in 1973,
they argued that the measurements which they used - fat and muscle depths
taken by probe over the m. longissimus - were better predictors of leanness
than the criteria used in the common pig classification scheme of the original
six member states - carcass weight, backfat measurements on the splitline and
a visual assessment of conformation. Even so, these three countries themselves
used different instruments and probing positions.

Later on, the principles of the new EC scheme are agreed. To be accepted
a method must use objective measurements and must be shown to be accurate.
There is also some consistency in the methods used. Some member states use
fat and muscle depths measured at similar points because trials have suggested
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that these tend to be good predictors. Several member states also use the same
instruments with which to measure the fat and muscle depths, simply because the
same instruments are widely available throughout the EU and have been shown
to be sufficiently accurate.

In the 80’s there was a desire to promote harmonisation of classification meth-
ods within the Community, although each Member State had its own authorized
methods. This could be achieved by all Member States using similar instruments,
measuring at the same sites or using the same equations. Unfortunately the pig
populations of Member States differ in their genetic history and there is concern
that they may differ in their leanness at the same subcutaneous fat and muscle
depths. As expected, the results from the 1990 EC trial suggest there would be a
noticeable loss in accuracy if a common prediction equation were imposed upon
Member States (Cook & Yates, 1992).

The problem with standardisation of equipment is that it could provide one
manufacturer with a monopoly from which it would be difficult to change, and
might limit the incentive for developing more accurate or cheaper equipment.
At present different Member States use a wide variety of equipment, ranging in
price and sophistication, from simple optical probes which are hand operated
and based on the periscope principle, to the Danish Autofom, a robotic system
capable of automatically measure more than 2000 fat and muscle depths. Most
of the equipments can be seen on the website : www.eupigclass.org

The most common probes are based on an optical principle. Although hand
operated, fat and muscle depths are automatically recorded. A light source near
the top of the probe emits light and a receptor measures the reflection level, which
is different for fat and muscle tissues.

Some equipments use ultra-sounds also for measuring fat and muscle depths.
Video-image analysis techniques are still under development. Other measure-

ments are used such as areas of fat and muscle tissues.
In the future one can envisage the use of whole body scanners for example.

Documentation of measuring equipment

The need to consider precision arises from the fact that tests performed on pre-
sumably identical materials under presumably identical circumstances do not, in
general, yield identical results. This is attributed to unavoidable random errors.

Various factors may contribute to the variability of results from a measure-
ment method, including:

• the operator

• the equipment used

• the calibration of the equipment
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• the environment (temperature, humidity, etc.)

• the slaughter process

• the time elapsed between measurements

The use of statistical methods for measuring method validation is described
in ISO 5725. The use of the standard is well established in analytical chemistry
for instance (Feinberg, 1995). In the meat sector, DMRI have started to use the
principles in the documentation of any measuring equipment (Olsen, 1997).

ISO 5725 In addition to a manual, the documentation must include a descrip-
tion of the measuring properties. These are laid down on the basis of experiments
which include all facets of the application of the instruments and should include
the following aspects:

Accuracy
The accuracy of the method includes trueness and precision. Trueness refers

to the agreement between the measuring result and an accepted reference value,
and is normally expressed as the bias. The precision refers to the agreement
between the measuring results divided into repeatability and reproducibility (see
the examples below). The two measures express the lowest and the highest vari-
ation of the results and are indicated by the dispersions sr and sR. Finally the
reliability of the method is relevantly defined as the ratio s2

D/(s2
D + s2

R) where
sD indicates the natural variation of the characteristic. As a rule-of-thumb the
reliability should be at least 80 % .

Robustness
It is essential for the determination of accuracy that the sources of measuring

variations are known, and thereby a measure of the robustness of the method
towards external factors. The influence of external factors (temperature, light
etc.) should be limited by determination of a tolerance field for these factors.

Reference
If the reference of the measuring method is another measuring method it

should be described by its precision. As far as possible certified reference mate-
rials or measurements from accredited laboratories should be applied as absolute
references.

Experiences from Danish tests

Repeatability of an automatic equipment
Repeatability is defined as the closeness of agreement between the results of

measurements on identical test material, where the measurements are carried out
using the same equipment within short intervals of time.
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The repeatability of Autofom has been tested by measuring some carcasses
twice. When testing the repeatability of Autofom no formula for calculation of
lean meat percentage on the basis of fat and muscle depth had been developed.
Therefore, the “C measure”, which is the smallest fat depth at the loin in the
area of the last rib, was used as an expression of the Autofom measurements.
The repeatability standard deviation was estimated at approximately 1 mm, as
expected.

Reproducibility of a manual equipment
Normally, reproducibility is defined as the closeness of agreement between the

results of measurements on an identical test material, where the measurements
are carried out under changing conditions.

Apart from random errors, the operators usually contribute the main part
of the variability between measurements obtained under reproducibility condi-
tions. When investigating the UNIFOM equipment the total error variance
was estimated at s2 ≈ 2.4 units and the contribution from the operators was
s2
operator ≈ 0.2units. As a consequence the average difference between two oper-

ators will be in the interval 0±1.96
√

2s2
operator or 0±1.1 units (95% confidence

limits).

Overview of the handbook

The first drafts of the statistical handbook were organized according the differ-
ent statistical methods with the same plan for all chapters: model, estimation,
validation. A first introductive chapter dealt with general statistical issues. Each
chapter has been written by a national expert of pig classification taking part
to the meetings of the Pig Meat Management Committee in Brussels. The de-
scription of the statistical methods were quite short and time was missing for
introducing examples.

For this new version it has been decided to completely modify the structure.
As the main users of this handbook will be the national teams responsible of
assessing pig classification methods in their country a structure built from the
practical problems as they occur during the time appeared more suited. Given
the dissection trial is the central point in such projects the handbook is split into
2 main parts: before the trial and after the trial.

The described statistical methods are the same than in the former versions
but notation has been harmonized, material has been thoroughly revised and
extended, examples have been added and processed according the different soft-
wares, the references have been updated throughout (Appendix A) and a report-
writing section has been included. Furthermore, an attempt of harmonisation
of the accuracy criteria has led for choosing the RMSEP. This new edition ex-
plains therefore how to calculate it in all cases. For some specific cases formulae
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have been put in appendix B. The choice of a prediction error criteria has some
influence on sampling. Sampling recommendations have therefore been adapted.

Part 1 deals mainly with sampling and the statistical methods for creating
prediction formulae. Sampling is split into two chapters, describing first some
general issues and then some specificities linked with the statistical method to
be used. For the description of the statistical methods it has been taken into
account the number of predictors (few vs. many) which is one of the charac-
teristics of the classification instruments. The model underlying these 2 kind of
statistical methods (multiple regression vs. PLS / PCR) is described for each
one. Then, estimation and validation are presented. A specific chapter describes
2 methods used for saving experimental cost. Finally, the last chapter gives some
recommendations on what could be included in the protocol of the trial.

The second Part deals about what has to be done after the trial, i.e. data
processing and reporting. The main chapter consists of estimation and validation
in practice. Some examples from pig classification support the different stages
of data processing which specificities are given for the main available software.
Before that, an introductive chapter deals with the initial examination of data
giving in particular some recommendations on how to manage outliers and influ-
ent data. The last chapter speaks about report-writing concerning the results of
the trial which have to be presented in Brussels for gaining approval of the tested
classification methods.

The use of this handbook is quite easy. The reader has just a few questions
to answer :

• How many instruments to test: one or several ?

• Are there immediately available or not ?

• Do the instruments measure a few or many variables ?

• If many measurements what is the assumed dimensionality of the data ?

• Am I interested in saving experimental cost ?

• Which software may I use ?

According the answers the experimenter has just to read the concerned sec-
tions.
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Chapter 1

Sampling with regard to a pig
population

By Gérard Daumas

In Commission Regulation No 3127/94, Article 1, it is stated that a prediction
formula should be based on “... a representative sample of the national or regional
pig meat production concerned by the assessment method ...”.

In statistics, sampling is the selection of individuals from a population of
interest. Generally, in pig classification context the population of interest is
defined as the national population of slaughterpigs in a certain range of carcass
weight.

A “representative sample” is an ambiguous concept. Generally, it is inter-
preted as a sampling scheme with equal probabilities (uniform random sampling).
Nevertheless, it is often more efficient to take units with unequal probabilities or
to over-represent some fractions of the population (Tillé, 2001). To estimate ac-
curately a function of interest (here: a regression) one must look for information
in a wise way rather than to give the same importance to each unit.

We therefore interpret the EU regulation in the sense of a sample which aims
to assure valid and unbiased conclusions about the population.

Some basic knowledge about sampling can be obtained from basic text book,
like for instance Cochran (1977).

1.1 A short description of the population of in-

terest

In the framework of EUPIGCLASS project a questionnaire about pig population
and classification was sent in 2001 to most of the EU member states and candidate
countries. Daumas (2003) reported a compilation of the answers. Below is the
information relative to the heterogeneousness of the national populations.
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Chapter 1. Sampling with regard to a pig population

“Subpopulations are an important issue for assessing classification methods.
The questionnaire proposed the two main factors known having a significant
effect on the prediction of the lean meat proportion, i.e. sex and breed. Only
Italy mentioned another kind of subpopulations: heavy pigs (110 - 155 kg) vs.
light pigs (70 - 110 kg).

According to sex the slaughterpigs can have three sexual types: females, entire
males or castrated males (castrates). If evidently all countries slaughter females
(around 50 % of the slaughtering) only three countries slaughter both entire and
castrated males in non-negligible proportions. Spain estimates to half and half the
proportions of entire and castrated males while Denmark and Bulgaria announce
that around 10 % of the males are not castrated. Two countries slaughter only
entire males: Great Britain and Ireland, but with a low slaughter weight (71 kg).
All the other countries slaughter only castrates.

According to breeds the situation is more confused. In general, slaughter-
pigs are not pure breeds but crosses between two, three or four breeds. Others
are synthetic lines developed by genetic companies. Generally no statistics are
available on this matter. The answers are therefore to be considered as experts’
estimations at a determined time. Some large countries, like Germany or Great
Britain, did not provide any piece of information. Some small countries, like
Estonia, may be considered as homogeneous.

All the other countries declared between two and four crossbreds, except the
Czech Republic with six. The declared crossbred sum up to more than 90 % of
the national slaughtering.

Crosses are mainly performed between the five following breeds : Large White
(also called Yorkshire), Landrace, Pietrain, Hampshire and Duroc.”
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Chapter 1. Sampling with regard to a pig population

1.2 Sampling frame and some practical consid-

erations

National pig populations are so wide that no sampling frame is available. It is a
technical barrier for a random sampling.

As it is not possible to directly select the pigs it is therefore needed to select
first intermediary units (either pig farms or slaughterhouses). In practice, as the
classification measurements (predictors) are taken on slaughterline, it is often
more convenient to select slaughterhouses rather than pig farms. This kind of
sampling plan is called a “two-level sampling plan” (Tillé, 2001). At each level
any plan may be applied.

1.2.1 Selection on line (last level)

If there is no stratification, a kind of systematic sampling can be performed. A
systematic sampling is the selection of every kth element of a sequence. Using this
procedure, each element in the population has a known and equal probability of
selection. This makes systematic sampling functionally similar to simple random
sampling. It is however, much more efficient and much less expensive to do.

The researcher must ensure that the chosen sampling interval does not hide
a pattern. Any pattern would threaten randomness. In our case care has to be
taken about batches which correspond to pig producers. Batches size is variable.
It may be judicious for instance to select no more than one carcass per producer
(eventually a maximum of two).

1.2.2 Selection of the slaughterhouses (second level)

In most countries there are several ten slaughterhouses. But because of practical
considerations, especially regarding dissection, it would be difficult to select ran-
domly the slaughterhouses. Furthermore, it is generally not an important factor
structuring the variability. Slaughter and cooling process are much less important
than the origin of the pigs. In all cases the selection of the slaughterhouses has
to be reasoned.

If the national population is considered as homogeneous then the slaughter-
houses selection has no great influence. Nevertheless, higher is the number of
slaughterhouses higher is the sample variability.

In some countries the differences between slaughterhouses mainly come from
the different proportions of slaughterpigs genotypes. When these differences are
marked and the proportions in the national population are known a stratified
sampling (see section 1.1) is suited. Then, higher is the number of slaughterhouses
higher is the variability within genotypes. After having chosen a certain number
of slaughterhouses and taking into account the proportions of genotypes in each
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Chapter 1. Sampling with regard to a pig population

slaughterhouse it can be deduced the proportions of each genotype in the total
sample that has to be taken in each slaughterhouse.

1.2.3 Selection of the regions (first level)

In some other countries where regional differences are marked, due for instance
to genotype, feeding, housing, a kind of stratification (see section 1.1) may be
performed on regions when statistical data are available. Then, one or more
“regionally representative slaughterhouses” have to be selected within regions.
We therefore have a “3-level plan” (regions, slaughterhouses, pigs).

1.3 Stratification

Stratification is one of the best ways to introduce auxiliary information in a
sampling plan in order to increase the accuracy of parameters. Here, the auxiliary
information corresponds to the factor(s) of heterogeneousness (like sex and breed)
of the national population.

If a population can be divided into homogeneous subpopulations, a small
simple random sampling can be drawn from each, resulting in a sample that is
“representative” of the population. The subpopulations are called strata. The
sampling design is called stratified random sampling.

In the literature many factors influencing the corporal composition have been
reported. Among those having the most important effects on the lean meat
percentage itself and on its prediction sex and genotype may be identified in a
dissection trial.

Significant differences between sexes were reported for instance in the EU by
Cook and Yates (1992), in The Netherlands by Engel and Walstra (1991b, 1993),
in France by Daumas et al. (1994) and in Spain by Gispert et al. (1996).

Most EC member states considered their pig population to be genetically
heterogeneous, with up to six genetic subpopulations (see section 1.1). Most of
the European slaughterpigs come from crosses between three or four breeds. The
main difference is generally due to the boar (sire line), which gives more or less
lean content in the different selection programmes. High differences are expected
for instance between Pietrain and Large White boars. This effect is reduced after
crosses with the sow (mother line). Nevertheless, in some countries the genotype
may have an important effect. In that case the national population cannot be
considered as homogeneous and a stratified random sampling is therefore more
efficient than a simple random sampling (i.e., same sample size gives greater
precision).

Then two cases have to be considered:

• the stratification factor is not used as predictor in the model,
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• the stratification factor is also used as predictor in the model,

The first case could be a good way for managing the genotypes. An optimum
allocation (or disproportionate allocation) is the best solution when estimates of
the variability are available for each genotype. Each stratum is proportionate
to the standard deviation of the distribution of the variable. Larger samples are
taken in the strata with the greatest variability to generate the least possible
sampling variance. The optimal allocation depends on the function of interest:
here a regression. Note that to infer a single equation to population one must
re-weight the carcasses within stratum (here: genotype) proportional to share of
population.

If no (reliable) information is available on the intra stratum variability then a
proportional allocation can be performed. Proportionate allocation uses a sam-
pling fraction in each of the strata that is proportional to that of the total pop-
ulation.

The second case (see also section 2.2.4) could be for instance a way for man-
aging the sex. As sex is known on slaughterline and easy to record then sex can
be put in the model of prediction of the lean meat proportion. Following the con-
clusions of the 1990 EC trial (Cook and Yates, 1992), France decided to introduce
separate equations for the sexual types when sex effect is significant (Daumas et
al., 1998). In that case it does not matter if sampling is proportionate or dispro-
portionate. Nevertheless, as the standard deviation is higher for castrates than
for females it is more efficient to select a higher proportion of castrates (Daumas
and Dhorne, 1995).

A very specific case is the Dutch situation where sex was used both in the
model and for stratification (Engel and Walstra, 1993). Unlike France, sex is not
recorded on slaughterline in The Netherlands. So, they decided to use a non-
linear model for predicting the sex through a logistic regression (see Appendix
B5). As sex is predicted in this two-stage procedure the gain in accuracy is much
lower than for separate formulas. Moreover, if the allocation would have been
optimal it would have been necessary to re-weight samples (proportional to share
of population) to infer to population.
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Chapter 2

Statistical Methods for creating
Prediction Formulae

By David Causeur, Gérard Daumas, Bas Engel and Søren Højs-
gaard.

2.1 Introduction

In pig carcass classification, the LMP of a carcass is predicted from of a set of
measurements made on the carcass. These measurements (explanatory variables)
can be e.g. ultrasound or, as is the case for the data used in the illustrative worked
example, measurements of physical characteristics and thicknesses of fat and
meat layer at different locations. In practice, a prediction formula is established
by applying statistical methods to training data (data for which not only the
explanatory variables but also the true LMP is known from e.g. dissection).

Different statistical methods are currently used in the European Union to
assess the prediction formulae. The choice for a particular prediction method de-
pends mostly on the instrument which is used to measure the predictors. These
instruments can indeed roughly be classified into two groups: the probes measur-
ing a small number of predictors at few specific locations in the carcass, and other
instruments extracting many measurements by a more general scanning of the
carcass. In the former case, the explanatory variables are usually highly corre-
lated. Consequently, a classical statistical method such as ordinary least squares
(OLS) may be inappropriate for constructing the prediction formula because the
predictions can have very large variances. Therefore one often use alternative
methods, and two such are partial least squares (PLS) or principal component
regression (PCR), see Sundberg (1999) for discussion of this.
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Chapter 2. Statistical Methods for creating Prediction Formulae

2.1.1 OLS or rank reduced methods: a matter of dimen-
sionality

The first issue the user is faced with is naturally the choice between OLS and
an alternative method. This problem is generally addressed in the statistical
handbooks by somewhat theoretical arguments which claim for instance that
PLS has always to be be preferred first because it is known to be at least as good
as PCR and second because OLS is nothing more than a particular case of PLS.
Also it must be true, we will try in the following to give more insight to the choice
of a particular method in the specific context of pigs classification.

First, in this context, the practitioners can observe that the prediction for-
mulae assessed with few predictors, usually less than 5, and those assessed with
hundreds of predictors are almost as accurate, or at least that the difference in
accuracy is not proportional to the difference between the numbers of predictors
that are measured. This shall points out that the amounts of predicting infor-
mation collected in both cases are not so different. Furthermore, whatever the
instrument that is used, it appears in all cases that a small number of axis of
predicting information can be identified, or equivalently, that only a small num-
ber of latent variables are indirectly measured. This number of latent variables
is often referred as the dimensionality of the instrumental predictors.

Usually, the most important latent variable can be seen as the fat content in
the carcass. The second latent variable characterizes the amount of lean meat
and the third one is related to the physical conformation of the carcass. To be
more complete, each of the former latent variables can sometimes be doubled
to distinguish between fat or lean contents that could be due either to genetics
or to feeding. Finally, as a first approximation and only on the basis of what
has already been observed in the past experiments, it can be said that about 6
axis of predicting information can at most be expected to be identified in pig
carcass data. Consequently, the use of rank reduced method can actually be
recommended when the number of instrumental predictors is very large relative
to this dimensionality. In the other situations, it seems to be reasonable to inspect
carefully the redundancy of the predicting information and even to compare the
predictive ability of OLS and PLS.

2.1.2 An harmonized approach of the assessment of accu-
racy

Harmoniously assessing the accuracy of the prediction formulae is currently one
of the objectives of the EC-regulations that frame pigs classification in the Eu-
ropean Union. Although these regulations still contain some ambiguity with
respect to their practical applications, they tend to ensure a minimum level of
accuracy by restrictions on the sample size and the estimated residual standard
deviation. However, they do not yet account for substantial differences between

30



Chapter 2. Statistical Methods for creating Prediction Formulae

the prediction methods. As it will be mentioned thereafter, in the case of highly
correlated predictors, PLS and PCR often work well in practice being superior
to OLS in terms of accuracy of the predictions. This is basically achieved by
allowing for bias in the estimation of the regression coefficients in order to reduce
its variance. Due to this bias, the estimated residual standard deviation does
probably not reflect faithfully the predictive ability of PLS and PCR. Moreover,
these methods suffer from other deficiencies. First, they are defined iteratively
meaning that precise interpretation is difficult to grasp. Second, the statistical
properties are difficult to stipulate. To be specific, it is unclear how to estimate
the residual variance and how to estimate variance of the parameter estimators.

The will for harmonization obviously appeals for the choice of a single cri-
terion that first can be computed whatever the prediction method and second,
that reflects the predictive ability rather than the precision of estimation. In
the following sections, it is advised to choose the Root Mean Squared Error of
Prediction, designed by RMSEP, computed by a full cross-validation technique
and some arguments motivating this choice are given.

2.2 Statistical Methods

Our purpose here is to give technical hints to actually calculate the prediction
formulae. Further details on this kind of issues can be found in many handbooks
dedicated to statistical models for prediction, for instance Rao and Toutenburg
(1999). These estimation procedures are sometimes presented as if the dimen-
sionality was not part of the estimation issue. However, in most of the practical
situations of pigs classification, an important and sensitive work is done on the
data either to define a relevant set of predictors before the prediction formula
is assessed or to investigate the dimensionality problem. In other words, the
dimensionality is actually a meta-parameter, which estimation has to be consid-
ered in that section and at least accounted for when the problem of validating
the prediction formulae will be addressed. For that reason, first in the case the
set of predictors and the dimensionality are assumed to be known, we present
the usual procedures that underly the prediction packages generally provided by
the softwares. Then the estimation of the dimensionality or the selection of a
relevant set of predictors is investigated and specific recommendations are given.
Hereafter, the validation problem is considered with respect both to the fitting
procedure itself and to the selection step.

2.2.1 The prediction model

It is supposed that the LMP, generically denoted by y, is measured together with
the p predictors x = (x1, . . . , xp) on n sampled carcasses. The training data
that are used to establish the prediction formula are therefore D = {(yi, xi), i =
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1, . . . , n}. Further details about sampling are mentioned in chapter 3. Up to
sophistications that could be shown to be relevant in some special cases, the
following linear regression model is traditionally assumed:

yi = β0 + β1xi1 + . . . + βpxip + εi,

where εi ∼ N(0, σ) stands for the residual error, β0 denotes the offset and β =
(β1, . . . , βp)

′ is the p−vector of the slope coefficients.
Therefore, the general expression for the prediction formulae is a linear com-

bination of the instrumental predictors:

ŷ(x) = β̂0 + β̂1x1 + . . . + β̂pxp

where ŷ(x) denotes the predicted LMP for a carcass which values for the instru-
mental predictors are x, β̂0 is the estimated offset and β̂j, j = 1, . . . , p, are the
estimated slope coefficients.

Up to now, call β̂ = (β̂1, . . . , β̂p)
′ the p− vector of the estimated slopes.

2.2.2 Estimation when the dimensionality is assumed to
be known

The least-squares criterion

Estimation usually consists in minimizing a criterion that measures the global
difference between predicted and observed values. For theoretical reasons that
go beyond the scope of our purpose, the least-squares criterion appears to be
relevant, at least in some extent:

SS(β0, β) =
n∑

i=1

(yi − β0 − β1xi1 + . . . + βpxip)
2.

It will be shown in section 8 that alternative criteria can be used especially if
outliers are suspected to influence abnormally the estimation procedure.

The OLS solution

Minimization of this criterion can be achieved by equating its derivatives
relative to each coefficient: for all j = 0, 1, . . . , p, ∂SS

∂βj
(β̂0, β̂) = 0. Therefore, β̂0

and β̂ are obtained by solving what is called the system of normal equations:

∂SS
∂β0

(β̂0, β̂) = −2
∑n

i=1(yi − β̂0 − β̂1xi1 + . . . + β̂pxip) = 0,
∂SS
∂β1

(β̂0, β̂) = −2
∑n

i=1 xi1(yi − β̂0 − β̂1xi1 + . . . + β̂pxip) = 0,
∂SS
∂β2

(β̂0, β̂) = −2
∑n

i=1 xi2(yi − β̂0 − β̂1xi1 + . . . + β̂pxip) = 0,
...

...
...

...
...

∂SS
∂βp

(β̂0, β̂) = −2
∑n

i=1 xip(yi − β̂0 − β̂1xi1 + . . . + β̂pxip) = 0.
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The first equation states that the predicted value for the LMP when the values
of the instrumental predictors are the mean values x̄j is simply the average lean
meat ȳ or in other words:

β̂0 = ȳ − β̂1x̄1 − . . .− β̂px̄p.

Imputing this value of the offset in the p other equations yields:

∑n
i=1(xi1 − x̄1)

(
[yi − ȳ]− β̂1 [xi1 − x̄1] + . . . + β̂p [xip − x̄p]

)
= 0,∑n

i=1(xi2 − x̄2)
(
[yi − ȳ]− β̂1 [xi1 − x̄1] + . . . + β̂p [xip − x̄p]

)
= 0,

...
...

...∑n
i=1(xip − x̄p)

(
[yi − ȳ]− β̂1 [xi1 − x̄1] + . . . + β̂p [xip − x̄p]

)
= 0.

,

or equivalently, with matrix notations:

sxy − Sxxβ̂ = 0,

where sxy and Sxx denote respectively the empirical covariance p−vector between
y and the predictors and the p × p empirical variance-covariance of the instru-
mental predictors.

At that point, it has to be noted that solving this equation is just a matter of
regularity of Sxx. In the very convenient case where Sxx is not ill-conditioned, in
other words when exhibiting the inverse matrix S−1

xx is not subject to numerical
problems, solving the least-squares problem leads to the OLS solution:

β̂OLS = S−1
xx sxy.

It is well-known that the former OLS estimator has desirable properties such
as unbiasedness and an easy-to-compute variance, which makes inference, and
especially prediction, easier.

Biased solutions

Ill-conditioned matrices Sxx are known to be encountered when the predict-
ing information is redundant, or equivalently when the number of predictors is
much higher than the dimensionality. In that case, some methods, called biased
regression methods, consist in replacing S−1

xx by an approximate version, denoted
by G:

β̂BR = Gsxy.

This modification of the OLS estimator makes the new estimator biased. In that
case, the mean squared error MSE is traditionally used to reflect more properly
the accuracy of the estimator:

MSE = bias2 + variance.
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The most relevant choices for G aim at a compensation of the increase of the bias
by a reduction of the variance. Globally, this trade-off between bias and variance
can even lead to a better accuracy in terms of mean squared error.

Many techniques can be used to find a satisfactory G matrix and some of
them are generally provided by the statistical softwares. Maybe the most intuitive
technique is the ridge regression that consists in choosing G in a family of matrices
indexed by a single value λ:

G ∈ Gλ =
{
(Sxx + λIp)

−1, λ > 0
}

.

In this approach, the trade-off between bias and variance is transposed into a kind
of cursor λ that can be moved from zero to introduce bias and simultaneously
reduce the variance.

Rank-reduced solutions

Other techniques, sometimes said to be rank-reduced, are getting more and
more popular since they directly connect the choice of G with the problem of
dimensionality. Two of the most widely spread among these methods are PCR
and PLS. The first idea behind these methods is the extraction from the predictors
of a small number, say k, of independent new variables tj = (t1j, t2j, . . . , tnj)

′

defined as linear combinations of the centered instrumental predictors:

tij = w1j(xi1 − x̄1) + w2j(xi2 − x̄2) + wpj(xip − x̄ip),

where wj = (w1j, w2j, . . . , wpj)
′ is called the jth vector of loadings. To bridge the

gap with the introductory words on dimensionality, the extracted components
make it concrete the latent variables and therefore k can be interpreted as the
dimensionality. For brevity, call X the n× p matrix of the centered values of the
instrumental predictors, T the n×k matrix of the components values and W the
p× k matrix of loadings, then:

T = XW.

In both cases of PCR and PLS, the extraction of the components can be presented
from an algorithmic point of view as an iterative procedure. In the case of
PCR, this extraction procedure is simply a Principal Component Analysis of the
instrumental predictors: initially, t1 is the component with maximal variance,
then t2 is chosen as the component with maximal variance among those with null
covariance with t1, and so on until the kth component. In the case of PLS, the
strategy differs only by the criterion which is optimized at each step: the variance
is indeed replaced by the squared covariance with the response. This difference
is often used as an argument to underline the superiority of PLS relative to PCR
in a context of prediction: extraction of the PLS components is indeed oriented
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towards prediction whereas extraction of the PCR components does not rely on
the values of the response at all.

Once the components are extracted, the second phase consists in predicting
the response by OLS as if the predictors were the components. The n−vector of
fitted values of the response by the rank-reduced methods is therefore obtained
as follows:

ŷ = T (T ′T )−1T ′Y,

= X W (W ′SxxW )−1W ′sxY︸ ︷︷ ︸
ˆβRR

.

Therefore, in the case of rank-reduced methods, the vector of estimated slope
coefficients is given by:

β̂RR = W (W ′SxxW )−1W ′sxY .

Equivalently, the generic expression for the G matrix figuring an approximation
of S−1

xx is expressed as follows:

G = W (W ′SxxW )−1W ′.

The algorithms providing the matrices of loadings in the case of PLS and PCR
have been described above. In the particular case of PCR, this algorithm yields
in some sense the best approximation of Sxx by a matrix G−1 with rank k.

Now, in the case of PLS, Helland (1998) showed that the iterative algorithm
consists finally in choosing the most relevant G, leading to the smallest MSE, in
the following set of matrices:

G ∈ Gk,α =
{
α0Ip + α1Sxx + . . . + αkS

k
xx, α = (α0, α1, . . . , αk)

′.
}

,

which also makes the PLS estimator optimal in some sense.
Although the problem of dimensionality may be considered by some prac-

titioners as an additional trouble specific to rank-reduced methods, it must be
noted that this problem is of course only masked while using OLS. It is indeed
very tempting to build regression models with all the present predictors to im-
prove the fit but it must be kept in mind that this conservative behavior damages
the predictive ability of the prediction formula. This issue is addressed in the
next section and recommendations are given to estimate properly the dimension
meta-parameter.

2.2.3 Estimation of the dimensionality

It can of course be imagined that estimating the dimension parameter is not
strictly speaking a statistical issue. For instance, it can be decided before the

35



Chapter 2. Statistical Methods for creating Prediction Formulae

regression experiment that, say three, pre-chosen instrumental predictors will be
sufficient to predict the LMP. In that case, provided that this choice is relevant,
it can be considered that the dimensionality equals the number of predictors and
OLS can simply be performed in the old-fashioned way to derive the prediction
formula. Suppose now that hundreds of instrumental predictors are collected by
a general scanning of the carcass, but that a prior reliable knowledge available
on these instrumental predictors makes it relevant to consider that only, say
three, latent variables are measured. In that case as well, setting the dimension
parameter to three is also possible without further statistical developments.

However, due to an uncertainty about the redundancy in the predicting infor-
mation that is collected, a statistical procedure is sometimes needed to chose for a
proper value for the dimension parameter. Note that the redundancy analysis can
at first be approached by widely spread exploratory data tools, such as Principal
Components Analysis (PCA), that enable a simplified reading of a large correla-
tion matrix. However, these tools do not generally allow for a rigorous analysis
of the redundancy within the instrumental predictors in our context of prediction
since they do not enable a proper display of the partial dependencies between the
response and some predictors conditionally on others. Therefore, we recommend
an exhaustive comparison of the predictive abilities that can be obtained for each
value of the dimension parameter. Note that this strategy supposes that a val-
idation criterion that quantifies the predictive ability of a prediction method is
previously defined: this issue is discussed below in section 2.3 and the Root Mean
Squared Error of Prediction (RMSEP) is recommended as a validation criterion.

This kind of exhaustive comparison is generally proposed by most of the sta-
tistical softwares. Concerning rank-reduced methods, it consists in calculating
the validation criterion RMSEP(k) for reasonable choices of the dimension pa-
rameter (usually in the context of pigs classification, k ≤ 10). In the case of OLS,
the computations can turn out to be cumbersome since obtaining the predictive
ability for a given dimension k consists first in calculating the validation criterion
for all the subsets of k predictors before keeping the best one, namely:

RMSEP(k) = min {RMSEP(Xi1 , Xi2 , . . . , Xik), 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ p} .

As it has already been mentioned before, it is sometimes very tempting to consider
that the best value for the dimension parameter corresponds to the minimum
value for the RMSEP:

k̂ = arg min
k

RMSEP(k).

However, this objective strategy often leads to an over-estimation of the dimen-
sion. In fact, it is highly recommended to inspect more carefully the successive
differences ∆ (k) = RMSEP(k)−RMSEP(k−1): as soon as a difference ∆ (k0) can
be considered as small relative to the successive differences observed previously,
it can indicate that k0 is a good candidate for the dimension.
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The estimation procedures presented before are illustrated by the analysis of
a real data set in section 9.2.

2.2.4 Regression with structuring factors

As already mentioned in chapter 1 about sampling, most of the European coun-
tries are not homogeneous and have several sub-populations. This means that a
factor structures the variability of the population. If this factor is unknown on
the slaughterline (like genotype for instance) we recommend a suited sampling:
stratified sampling (see 1.2 for details), but if this factor can easily be known on
the slaughterline (like sex for instance) we recommend to introduce this factor in
the model.

This model was implemented in the French slaughterhouses in 1997 using a sex
indicator (female vs. castrated male) (Daumas et al, 1998). It is also approved
in Italy for “heavy pigs” vs. “light pigs” (two sub-populations differing not only
by the carcass weight but also by production area, breed, . . . ).

Obviously, as for any model, the coefficients have to be significant. The more
the sub-populations differ in the relation between carcass measurements and lean
meat percentage the more a factorial model will increase the accuracy.

In all cases, member states that decide to address subpopulations, should
confirm to the requirement that prediction should be at least as accurate as
prediction by an approved standard method applied to a sample of 120 pigs.

To be more specific, suppose that two subpopulations are considered that
markedly differ in the relation between carcass measurements and lean meat
percentage. In that case it is likely that two separate formulae, each based for in-
stance on 60 animals, conform the minimal requirement of a total of 120 carcasses,
would be an improvement over a method that employs random or proportional
sampling with respect to subpopulations and ignores subpopulations in the sub-
sequent statistical calculations. When differences are very large, it is not unlikely
that even for three subpopulations, separate formulae based on for instance 40
carcasses per subpopulation, again resulting in the minimal total of 120, would
offer an improvement. However, when many subpopulations are considered, and
the differences are moderate to small, attention to sub populations, for a total
sample size of 120, may actually reduce the accuracy for prediction compared
with the aforementioned standard method as mentioned in the regulations. In
that case the method of prediction would not be approved. Possible remedies
are either to choose for the standard approach in combination with random or
proportional sampling or to increase the total sample size to such an extent that
indicators of subpopulation member ship become more valuable for prediction.
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2.3 Validation

2.3.1 MSE - The mean squared error

In regression based on ordinary least squares, the variance is estimated by

MSE = σ̂2 =
1

N − (p + 1)

∑
i: training carcasses

(yi − ŷ(xi))
2.

There are problems with regarding MSE as a measure of predictive performance:

1. The residual error variance σ2 can be regarded as an internal measure of how
well the linear model fits to the training data. The residual error variance σ2

is not in itself a measure of how well the model performs in prediction new
carcasses, i.e. it is not a good external measure of the predictive abilities of
the model.

(It is well known, that the estimate MSE can be made arbitrarily small by
just making the model very complex by adding more predictor variables).

2. Finally, MSE is not a well–defined quantity for some statistical methods –
the problem being: What is p in 1

N−(p+1)
? (In PLS/PCR, p is often taken

to be the number of latent variables, and although this seems plausible in
practice, this lacks theoretical justification)

2.3.2 MSEP – Using external data

An alternative could be to take a new (randomly selected) set of “validation”
carcasses Dv and measure y and x1, . . . , xp on these too. Then one could look at
Squared Error of Prediction

SEP =
∑

validation carcasses

(yi − ŷ(xi))
2

– or more conveniently, the average SEP:

MSEP =
1

N
SEP

An advantage of MSEP is that it is a realistic quantity, in the sense that
it resembles what one would meet in practice. (Provided that the validation
carcasses resemble the population in which the prediction formula will be used.)
Generally MSEP > MSE because it is more difficult to predict the future than
the past! Yet, this approach is in practice not feasible: It is in practice too
expensive to dissect two sets of carcasses.
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2.3.3 Approximating MSEP by cross–validation

An alternative to having an external validation data set Dv as discussed above is
to use cross–validation methods: Here we suggest the use of leave–one–out cross
validation, as it is easy to implement in practice:

This works as follows: For each carcass i

1. Delete the ith carcass from the training set:

2. Estimate β0, β1, . . . , βp from the remaining observations

3. Predict y for the ith carcass and calculate

SEP−i = (yi − ŷ−i(xi))
2

where y−1(x) is the predictor obtained when the ith carcass is excluded
from the data set before estimating the regression parameters.

Next, calculate the PREdiction Sum of Squares PRESS =
∑

i SEP−i and
the average PRESS APRESS = 1

N
PRESS.

How much difference does it make in practice?

The question is now: How similar are APRESS and MSEP in practice? To provide
some insight to this question we consider the Danish carcass classification data,
see Section 9.2.

Figure 2.1: Location of fat depth measurements for Danish carcasses

For simplicity we only consider the fat measurements at the 7 “dots” in Fig-
ure 2.1 for 300 carcasses.

As statistical method for constructing the prediction we consider Principal
Component Regression (PCR) with 1...7 components. Note that PCR with 7
components corresponds to multiple linear regression.
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Design of study

The study was made as follows: Split data in two:

• N = 120, N = 60 and N = 30 training carcasses

• M = 150 validation carcasses

Then we calculate RMSE =
√

1
N

SE, (an internal measure of precision),

RMSEP =
√

1
M

SEP , (the “truth”), and RAPRESS =
√

1
N

PRESS (a cross-

validation quantity, which should be close to the “truth”)

Results

For N = 120 training carcasses we find the results in Table 2.1. Differences
between RAPRESS and RMSEP (the “truth”) are smaller than 7 %.

Table 2.1: Results when N = 120

RMSE RMSEP RAPRESS RAPRESS/RMSEP
1 LV’s 2.18 2.20 2.23 1.01
2 LV’s 2.18 2.22 2.24 1.01
3 LV’s 2.17 2.22 2.25 1.01
4 LV’s 2.09 2.24 2.22 0.99
5 LV’s 2.08 2.15 2.23 1.04
6 LV’s 2.08 2.12 2.25 1.06
7 LV’s 2.08 2.12 2.26 1.07

For N = 60 training carcasses we find the results in Table 2.2. Differences
between RAPRESS and RMSEP (the “truth”) are smaller than 5 %.

Table 2.2: Results when N = 60

RMSE RMSEP RAPRESS RAPRESS/RMSEP
1 LV’s 2.14 2.27 2.20 0.97
2 LV’s 2.09 2.26 2.17 0.96
3 LV’s 2.04 2.26 2.15 0.95
4 LV’s 2.03 2.29 2.22 0.97
5 LV’s 1.96 2.27 2.18 0.96
6 LV’s 1.96 2.16 2.19 1.02
7 LV’s 1.96 2.15 2.25 1.05
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For N = 30 training carcasses we find the results in Table 2.2. Differences
between RAPRESS and RMSEP (the “truth”) are smaller than 20 % (and this
large number appears only for the model with 7 latent variables, i.e. for a classical
multiple linear regression).

Table 2.3: Results when N = 60

RMSE RMSEP RAPRESS RAPRESS/RMSEP
1 LV’s 2.33 2.65 2.53 0.95
2 LV’s 2.18 2.64 2.46 0.93
3 LV’s 2.18 2.58 2.46 0.95
4 LV’s 2.14 2.52 2.68 1.07
5 LV’s 2.13 2.51 2.75 1.09
6 LV’s 1.96 2.52 2.60 1.03
7 LV’s 1.95 2.26 2.72 1.20

2.3.4 Summary

If the data is a random sample from the population, then MSEP can be quite
well approximated using simple leave–one–out cross validation.
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Chapter 3

Sampling: selection on variables

By Bas Engel

3.1 The nature of the sample

In Commission Regulation No 3127/94, Article 1, it is stated that a prediction
formula should be based on “...a representative sample of the national or regional
pig meat production concerned by the assessment method ...”.

To be considered representative, samples do not need to be chosen completely
at random. In fact, because we focus on the variation in y given the value of x in
LR, statistical theory allows us to select the carcasses on the basis of x. This can
be profitable, because selection of carcasses with more extreme fat or muscle depth
measurements will improve the accuracy of the estimated values β̂0 and β̂1 for
constant β0 and coefficient β1 and thus improve the accuracy of prediction. This
is illustrated in Figure 1, where the standard errors of the estimates β̂0 and β̂1 are
considerably smaller for selection of carcasses with extreme x-values compared
to selection of carcasses with moderate x-values. Consequently, carcasses for
dissection are often not selected randomly but according to a sampling scheme
that favors a larger percentage of more extreme instrumental measurements. Of
course carcass values should not be too extreme, in other to avoid selection of
carcasses of abnormal animals. Also, in practise sampling scheme (a) in Figure 1
is usually supplemented with carcasses with moderate x-values as well, otherwise
departures from linearity can hardly be detected. Curvature may lead to poor
predictions for moderate x-values.

A common sampling scheme in carcass classification is the 40-20-40 % scheme.
Suppose that µx and σx are the mean and standard deviation for x in the popu-
lation. In the 40-20-40 % scheme, 40 % of the sample is selected such that values
of x are below µx − σx, 40 % is above µx + σx and 20 % is in between.

Carcasses may be selected on the basis of an ”old” prediction formula, when
that formula is based on the same or similar instrumental carcass measurements.
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Thus, carcasses may for instance be selected on the basis of a linear combination
of fat and muscle depth. With respect to the carcass measurements, carcasses
represent points in the plane with fat and muscle depth along the horizontal and
vertical axes. Selection with an old formula will tend to produce a cluster of
carcasses with low fat depth and high muscle depth, a cluster with high fat depth
and low muscle depth and a cluster with intermediate values for both fat and
muscle depth. Roughly the carcasses will be along a line from the upper left-
hand corner to the lower right-hand corner, with emphasis on the upper left and
lower right-hand corners of the muscle and fat depth plane. Such a configuration
of carcasses that tends to be concentrated on a lower dimensional sub space
(the plane has dimension 2, while the line is a subset of dimension 1) is rather
vulnerable with respect to outliers and departures from linearity (Dhorne, 2000).
Therefore, such a selection procedure, although intuitively appealing, is not to
be recommended.

Problems may occur when some of the selection variables are not intended to
be included among the prediction variables. It may happen, for example, that
carcass weight is included as a selection variable, but not as a prediction variable.
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This is a common phenomenon among many past proposals. Such a sampling
procedure is not covered by standard LR theory. For standard theory to apply,
all selection variables have to be included as prediction variables as well. Such a
potentially faulty combination of selection and LR may have direct consequences
for authorization of a carcass measurement instrument (Engel et al., 2003). We
will return to this particular problem later on.

3.2 The size of the sample

In ordinary linear regression, intercept β0 and slope β1 are estimated by the
method of least squares, i.e. estimates ˆbeta0 and β̂1 minimize the sum of squared
deviations:

n∑
i=1

(yi − β0 − β1xi)
2

Denoting the minimum value by RSS (residual sum of squares), an estimate for
the variance σ2 is:

s2 = RSS/d.

The degrees of freedom d in the numerator are equal to the sample size n reduced
by the number p of unknowns to be estimated in the formula:

d = n− p.

For example, with one prediction variable x, we have two unknowns β0 and β1, so
p = 2 and for a sample of n = 120 we have d = 120−2 = 118 degrees of freedom.
Somewhat confusingly both the (unknown) population standard error σ and its
estimate s are often referred to as the residual standard deviation (RSD).

The accuracy of estimators β̂0 and β̂1 is reflected by their associated stan-
dard errors. Each of these standard errors is a multiple of σ2, say c0σ

2/
√

n and
c0σ

2/
√

n. Constants c0 and c1 depend on the configuration of x-values. Roughly:
the more widely separated the values of x, the smaller these constants will be.
With increasing sample size, the standard errors decrease with order 1/

√
n.

The minimum required sample size for LR in the EC regulations is fixed
in Article 1 of Commission Regulation No 3127/97 at n = 120. Each procedure
proposed should be as accurate as LR based on a sample of n = 120 carcasses. An
example of an alternative procedure to LR that we mentioned before is double-
regression (DR). DR is based on a double-sampling procedure. Carcasses are
dissected by a relatively quick and cheap national dissection method and only part
of these carcasses are also dissected by the more time consuming and expensive
EC-reference method. The two dissection procedures may be applied to the same
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or to different carcass halves of the same carcass. DR is specifically mentioned
in Article 1 of Commission Regulation No 3127/97. The number of carcasses n
which are (also) dissected according to the EC reference method should at least
equal 50. The total number of carcasses N , all dissected by the quick national
method, should be high enough such that the precision is at least as high as LR
for 120 EC-reference dissections. In Engel & Walstra (1991a) it is shown how
large the sample sizes N and N should be for DR to be as precise as LR for
120 EC-reference dissections. Engel & Walstra (1991a) present accurate large
sample results that avoid complete distributional assumptions. More accurate
small sample results, assuming normality, are presented in Causeur and Dhorne
(1998).

3.3 The accuracy of the prediction formula

The accuracy of prediction depends on the accuracy of estimates β̂0 and β̂1, but
also on the size of the error components ε. The accuracy of β̂0 and β̂1, as follows
from the discussion so far, depends on the sample size and on the configuration of
x-values. The size of the error terms ε is quantified by the residual variance σ2. It
is important to realize that the selection of carcasses does affect the accuracy of
β̂0 and β̂1, but not the accuracy of s2 as an estimator for σ2. The accuracy of s2

is measured by its standard error. Under a linear regression model this standard
error is equal to σ2

√
2/d, where d is the degrees of freedom. Since d = n−p and n

is at least 120 and with LR p will be relatively small, say smaller than 6, roughly
the standard error of s2 decreases with order 1/

√
n. By choosing larger samples

and appropriate configurations of x-values, we can make sure that β̂0 + β̂1 ∗ x is
as close to β0 + β1 ∗ x as we want it to be. In fact with a sample size of 120 the
difference between a random sample and a sample of selected carcasses is fairly
small (Engel et al., 2003; Font I Furnols,2002). However, we cannot reduce the
contribution to the prediction error of the error terms ε, as quantified by the
residual variance σ2. The size of σ2 depends on the measurement instrument
and the pig population. Unless some of the instrumental measurements that
were initially not used, perhaps for practical reasons, are added to the equation
later on, there is no possibility to reduce σ2. Similar comments can be made
with respect to a cost saving method such as DR, where we estimate the same
coefficients β0 and β1 as in ordinary LR, but in a more efficient way. Hence,
with DR we can attain a high accuracy for the estimates β̂0 and β̂1, but we have
to deal with the same residual variance σ2 as in LR. This implies that σ is the
crucial quantity for authorization of an instrument. It is therefore very important
to form a correct impression of the size of σ. When, due to an inept sampling
procedure, s does not offer an accurate impression of σ, this can have unfortunate
consequences for authorization. This may happen when some of the variables that
are included for selection are not included in the prediction formula. For details
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we refer to Engel et al. (2003).
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Chapter 4

Cost saving/precision increasing
methods

By David Causeur, Gérard Daumas, Thierry Dhorne and Bas Engel

In the previous chapters, some aspects of the interactions between the sta-
tistical recommendations that are expected from this handbook and the require-
ments laid down by the EC-regulations have been dealt with. Some of these
requirements (EC, 1994a and 1994b) are aiming to ensure a minimum level of
accuracy by restrictions on the methodology used to establish the prediction for-
mula. Roughly speaking, unreliability of the prediction formulæ is expected to
be avoided or at least reduced by a minimum sample size (currently 120 refer-
ence dissections) and a maximum limit for a validation criterion (currently 2.5
for the Residual Standard Deviation). As the reference dissections are heavily
time-consuming, an indirect consequence of the EC-requirements is the need for
expensive regression experiments. This chapter is devoted to the presentation of
statistical methods that can be used to face that problem of experimental costs, or
equivalently to save experimental units in the framework of the EC-requirements.

Some countries have chosen indeed to adopt new statistical methodologies
which account for both the experimental cost and the EC-requirements in the
definition of the sampling scheme. Basically, these new methods consist in re-
placing reference dissection by cheaper approximated versions for some of the
sampled carcasses. Section 4.1 is devoted to a further investigation of the prac-
tical advantages of such a novelty.

As it is explained in details by Engel and Walstra (1991a and 1991b) or
Causeur and Dhorne (1998), the subsequent sampling scheme involves two sam-
ples: a first one for which reference dissections and approximate reference dissec-
tions are performed together with measurements of the predictors and a second
one where only cheaper dissections are performed. Table 4.1 displays the gen-
eral form of the two-phase sampling schemes. Minimum costs strategies are then
obtained by relevant choices of the sample sizes. More detailed explanations are
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given in section 4.2.
The need for frequent new calculations or updates of the prediction formulae

have motivated new strategies. For instance, up to the EC regulations, each time
a new instrument is candidate for authorization, a new trial has to be conducted,
involving new reference dissections. In the French context, it has been decided
to derive once for all a prediction formula of the lean meat percentage on the
basis of predictors, that are supposed to be sophisticated enough to be consid-
ered as better than any other predictors used in the slaughter-line. Each time
an update of the prediction formula is needed, the only trial that is conducted
consists in common measurements of the instrumental predictors and the sophis-
ticated predictors introduced in the first experiment. Table 4.1 illustrates the
type of sampling scheme we are dealing with in such a context. Further details
on the construction of optimal sampling scheme are given in section 4.3. On a
methodological point of view, this two-phase approach leads to a combination
of two regression equations. The proper statistical framework in which such a
combination is possible is presented in Causeur and Dhorne (2003).

At this point, it can be noted that multivariate and/or multi-sample refine-
ments of these statistical methods can lead to further improvements. The result-
ing sampling strategies can be found in Causeur (2003). Finally, validation issues
are dealt with in section 4.4 and illustrations by worked examples are postponed
in section 9.3.

4.1 The practical interest in these methods

4.1.1 Reducing dissection cost

Direct measurement of carcass composition involves carcass dissection. This dis-
section largely destroys the financial value of the carcass and also requires expen-
sive laboratory facilities and staff. The minimum sample size imposed by the EU
regulation, actually 120 pigs, involves sizeable total costs.

This minimum is the same for all the EU countries, whatever the pig slaugh-
tering is less than 1 million per year or more than 20 millions per year. In order
to take into account the heterogeneousness of this slaughtering, especially in the
large producing countries, this minimum may be too low. A sample size of at
least 200 is probably more realistic for ensuring a certain representativeness. In
such a case the interest for saving experimental costs is still more acute.

Furthermore, such dissection trials have periodically to be performed because:

• The approved equations are old and the pig sector has some doubts about
their validity,

• The nature of the pig production has changed (different proportions of
breeds or sexes, ),
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Design for double-regression

Sampling Lean meat % Approximate Instrumental
item Lean meat % predictors

1 × × ×
2 × × ×
...

...
...

...
n × × ×

n+1 ? × ×
?

...
...

... ?
...

...

?
...

...

?
...

...
N ? × ×

Design for updates without new reference dissections

Sampling Lean meat % Sophisticated Instrumental
item predictors predictors

1 × × ?
2 × × ?
...

...
...

...
n × × ?

n+1 ? × ×
?

...
...

... ?
...

...

?
...

...

?
...

...
N ? × ×

Table 4.1: Two-phase sampling scheme for updates without new reference dissec-
tions. Missing values are figured by ?, observed values by ×.
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• A new classification instrument has to be tested,

• The EU definition of the LMP has changed.

There is evidence that the relationship between fat and muscle depths change
over time as well as between Member States. These changes suggest that more
frequent monitoring of the equations is necessary to ensure their continuing ac-
curacy (Cook & Yates, 1992). Nevertheless, the expensive dissection procedure
discourages both the updating of the equations and the development of cheaper
or more accurate measuring techniques.

So, the authors of the report on research concerning the harmonisation of
methods for classification of pig carcases in the Community recommended to
reduce the cost by the use of sample joint dissection and double regression. As a
consequence of this research double regression was introduced as the new standard
of the statistical technique in the EU regulations in 1993-1994.

Since then, several Member States have used this method for assessing their
classification methods. Works have been made for searching for the best concomi-
tant variable(s) and for optimizing the sample sizes. One of the best solution used
until now consists in removing the subcutaneous fat of ham, loin and shoulder
and to build several concomitant variables from these weights. The major con-
straint is the minimum sub-sample size of 50 imposed by the EU regulation in
order to ensure a certain representativeness. Using efficient concomitant vari-
ables the total sample size may be around 180. Such a design permits to cut the
experimental costs by 30% compared with 120 carcasses dissected according the
EU reference. Furthermore, the increase of 50 % of the sample size (180 vs. 120)
improves the representativeness.

This method may also be used as a mean for increasing the accuracy for a
fixed cost. Nevertheless, this case is less frequent in practice.

The statistical aspects of this method, called ”double regression”, are devel-
oped in §5.2.

4.1.2 Testing several instruments

Several companies sell different classification instruments. They differ in their
technology, price, size, accuracy, All the slaughterhouses have not the same needs.
So, most of the Member States are interested in testing several instruments.

Nevertheless, the present EU regulation specifies that the assessment of a
classification method is based on a sample of at least 120 carcases (or 50 in the
sub-sample if double regression). Using the same sample for all the instruments
is attractive. Unfortunately, it is difficult to manage a lot of equipments at the
same time. Moreover, most of the present instruments are invasive, which deters
the tissues. It means that a second instrument cannot measure the same variable
as a first one. Sure, another location could be used for the second instrument.
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By the way on one hand, the companies often recommend the same location
and on the other hand, different locations for the instruments may decrease the
comparability of classification data of the pig producers.

So, some Member States have chosen to test only one instrument. This situ-
ation has the main disadvantage to introduce a monopoly. Other Member States
have preferred to test a few equipments using ”surrogate locations”. Generally,
these are either the same location but on the right side or another location at 1
cm around the first hole. The former does not correspond to the real conditions
of use. As the equipments are manufactured for right-handlers one can expect
a significant effect between measurements on right and left sides. The latter
introduces also an error because the depths are not homogeneous, especially be-
tween 2 ribs. Furthermore, nobody until now has estimated these kinds of error
and taken into account when assessing the prediction equations. Such practices
cannot therefore be recommended.

A Member State has preferred to perform a separate trial for 2 instruments.
Experimental cost was therefore double.

France & Germany have introduced in the 80’ a strategy eliminating all these
disadvantages. This strategy was based in a two-stage procedure based on the
use of a reference instrument, more accurate than the to be tested instruments.
This has made possible to approve several instruments on a time period of some
years having only performed one dissection trial. Nevertheless, this procedure has
2 disadvantages: obliging all the instruments to measure at the same location(s)
and eventually modifying the instruments software after the calibration against
the reference instrument.

For these reasons France has deepened its strategy introducing now a ref-
erence method instead of a reference instrument. The difference is that each
instrument may have its own measuring locations. For applying such a strategy
new statistical developments were needed. The statistical aspects of this method,
called ”surrogate predictor regression”, are developed in §5.3.

Thanks to this great improvement France has got the official approval of 3
methods using different predictors, has calibrated several old methods and has
developed different classification control methods. Some of the methods were not
available at the dissection period which was the initial motivation to develop such
a procedure.

In a 5 years time around 10 equations have been assessed. This represents
a colossal saving cost and time compared to a dissection trial for each method.
With only 2 equipments to be tested the cost is nearly divided by 2 because
the cost of the 2nd stage (instruments calibration) is negligible compared to this
of the 1st stage (dissection trial). The gain is therefore much more important
than using double regression. Furthermore, surrogate predictor regression can be
combined with double regression in order to reduce even more the costs.
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4.2 Double regression

4.2.1 Introduction

Double regression (from now on referred to as DR) is a potentially useful method
when a surrogate for the EC reference percentage (Walstra and Merkus, 1995) is
available. With DR we can either considerably reduce the cost of dissection or
increase the precision of predictions without further experimental cost compared
to linear regression (from now on referred to as LR). The surrogate percentage
may take the form of a quick rough and ready national dissection method. The
reduction in cost (or increase in precision) is realized by reducing the number
of relatively expensive EC reference dissections and adding a larger number of
national dissections in a double sampling scheme. The national method must
be considerably cheaper than the EC reference method. Also, in addition to
the instrumental carcass measurements, the percentage obtained by the national
dissection method should have considerable predictive power for the EC reference
percentage. Otherwise there will be little to gain with DR compared with LR.

In technical statistical terms the national lean meat percentage is a concomi-
tant variable. DR has been generalized to the case of several concomitant vari-
ables by Causeur and Dhorne (1998). In principle, any set of variables that is
closely connected to the EC reference percentage and is not intended to be in-
cluded as prediction variables in the prediction formula, are a set of candidate
concomitant variables in DR. Here, attention will be restricted to the case of one
concomitant variable only. For illustrative purposes we will assume that the con-
comitant variable is the lean meat percentage obtained by a simplified, faster and
cheaper national dissection method. When several candidate concomitant vari-
ables are available, the most promising variable or a summary variable may be
used in DR. DR with several concomitant variables may offer a markedly larger
reduction in experimental cost compared with DR with one of the concomitant
variables only (Causeur and Dhorne, 1998). In Causeur and Dhorne (1998) the
lean meat percentage of the ham offers a reduction in cost of 25%. The lean meat
percentages of the loin should and filet each offer a reduction of less than 5 %.
However, all four concomitant variables together offer a reduction of 38 %. Some
notation before we proceed:

Y = EC reference lean meat percentage;

Y ∗ = faster and cheaper dissection method, e.g. a national method;

x1, x2, . . . = instrumental carcass measurements, e.g. a fat and muscle
depth measurement.

The predictive power for the EC reference percentage of the national percentage
Y ∗, in addition to the instrumental measurements x1, x2, . . . is measured by the
partial correlation between Y and Y ∗ given x1, x2, . . . . This partial correlation
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must be sufficiently large, otherwise DR will offer no marked advantage over LR.
Details will be discussed below.

The double sample consists of N carcasses that are dissected by the cheap
national method. From the N carcasses a typically much smaller subset of n
carcasses are also dissected according to the EC reference method. Practical
implementation may consist of, say, n carcass halves being dissected first by the
national method and then further dissected by the EC reference method, while
an additional (N − n) carcasses are dissected by the national method only. If
further dissection from national to EC reference percentage is a problem, and
carcass halves are dissected, n out of the N other halves of the carcasses may
be dissected by the EC reference method. For example, N right carcass halves
may be dissected by the cheap national method, while n out of the N available
left carcass halves are dissected by the EC reference method. Some details about
selection of carcasses and required sample sizes n and N will be provided below.

We will introduce DR with data from a dissection experiment carried out
in 1986 in The Netherlands to derive a prediction formula for the EC lean meat
percentage with the Henessy Grading Probe (HGP). This was the first application
of DR and predates the amendment of the EC regulations with respect to use of
DR. The instrumental measurements with the HGP were a back fat measurement
(x1) and a muscle thickness (x2), both measured at the third to fourth from
last rib position 6 cm from the dorsal mid line (Walstra, 1986). The surrogate
percentages Y ∗ were obtained by the IVO standard method (Walstra, 1980). This
is a quick incomplete dissection method that takes about 45 minutes per carcass
half.

4.2.2 Sampling

N = 200 right carcass halves were dissected according to the IVO standard
method (Walstra, 1980). A sub sample of n = 20 of these carcasses halves
were further dissected according to the EC reference method. Please note that
according to the regulations, at present a minimum sub sample size of n = 50
carcasses is required for the EC reference dissections in DR.

Carcasses were selected on the basis of HGP back fat thickness (x1). At the
time it was decided to mimic a random sample. Five back fat classes were chosen.
The numbers of dissected carcasses in these classes were chosen proportional to
the numbers in the population. An alternative sampling procedure would have
been the 40-20-40 % sampling scheme that is popular in pig carcass classification
experiments and mentioned elsewhere in the handbook. Carcasses were selected
from 5 slaughterhouses and 40 carcasses were selected from each slaughterhouse.
In order to reduce batch effects, every 10th carcass in the slaughterline was mea-
sured. The same team dissected all carcass halves. Twenty carcasses were dis-
sected at a time and two of them were further dissected by the EC reference
method. Further details may be found in Walstra (1986) and Engel & Walstra
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(1991a).

4.2.3 Calculations

This section is based on Engel and Walstra (1991a, b). The calculations are in
three steps. First of all we establish a regression formula for the total sample of
size N = 200 with the IVO standard percentage Y ∗ as the dependent variable
and the HGP fat and muscle depth measurements x1 and x2 as the explanatory
variables.

Ŷ ∗ = 65.64− 0.6762x1 + 0.0903x2, RSD1 = 1.79, N = 200. (4.1)

RSD1 is the estimated value of the residual standard deviation (the root from
the mean sum of squares for residual). Second, we establish a regression formula
for the EC reference lean meat percentage Y with fat and muscle depth x1 and
x2 and the IVO standard lean meat percentage Y ∗ as explanatory variables. This
regression is based on the sub sample of n = 20 carcasses only.

Ŷ = −12.3− 0.0564x1 + 0.0711x2 + 1.079Y ∗, RSD2 = 0.833, n = 20.(4.2)

In the third and last step we construct the final prediction formula for the EC
reference lean meat percentage. We replace Y ∗ in (4.2) by the right hand side of
(4.1):

Ŷ = −12.3− 0.0564x1 + 0.0711x2 + 1.079 (65.64− 0.6762x1 + 0.0903x2) .

This yields

Ŷ = 58.52− 0.786x1 + 0.168x2, n = 20 and N = 200. (4.3)

In Engel and Walstra (1991b) it is shown how simple approximations to the
standard errors for the estimated constant and coefficients can be obtained from
the output of the two regression equations. These approximate standard errors
are based on large sample results. Simulations show that these approximations
are adequate. Exact results are also available (Causeur and Dhorne, 1998).

As a suitable substitute for the RMSE we calculate an estimate for the residual
standard deviation (RSD) of the final prediction formula (4.3):

RSD2 = RSD2
2 + γ̂2RSD2

1. (4.4)

The coefficient γ̂ in expression (4.4) is the coefficient for the surrogate percentage
in (4.2). So, in this example γ̂ = 1.079. Furthermore, RSD1 and RSD2 are the
residual standard deviations in regressions (4.1) (total sample) and (4.2) (sub
sample). In this example RSD1 = 1.79 and RSD2 = 0.833. For the final
formula this yields:

RSD =
√

(0.833)2 + (1.079)2(1.79)2 = 2.10.
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An estimator with smaller order of bias than the maximum likelihood estimator
(4.4) is presented in Causeur and Dhorne (1998).

It is important to realize that DR offers an estimation procedure in combina-
tion with a double sampling scheme for the same constant and coefficients and
residual standard deviation that are estimated by LR. Hence, DR is no remedy
for measurement instruments where the value of σ is too high! The value of σ
depends on the pig population, the instrument and the measurements used, and
is for LR and DR the same.

There is the temptation in DR to leave the fat and muscle depth measurements
out of regression (4.2). In that case, when the relationship between the EC
reference and the national lean meat percentage has already been established
in the past, no further EC reference dissections would be needed to authorize a
new instrument. It would be enough to collect instrumental measurements and
perform national dissections only. However, when the instrumental measurements
add significantly to regression (2), such an approach may produce poor estimates
for the constant and coefficients in the final regression formula and the true RSD
may be considerably underestimated. For details we refer to Engel and Walstra
(1991b) and Engel (1987).

4.2.4 Required sample sizes n and N

In order to calculate the required sample sizes, we need to evaluate the partial
correlation between the EC reference and the national lean meat percentage,
given the instrumental carcass measurements. This partial correlation measures
correlation between the EC and national lean meat percentages that is not al-
ready explained through the instrumental carcass measurements. It is a measure
of the contribution of Y ∗ to regression (4.2) in addition to the instrumental mea-
surements, e.g. the HGP fat and muscle depth in the example.

The partial correlation, say ρ, can be estimated as follows:

ρ̂ = γ̂
RSD1

RSD
.

In the example: ρ̂ = 1.079 ∗ 1.79/2.10 = 0.92. Suppose that we want DR to be
as accurate as LR with a sample size of m EC reference dissections. In that case
the total cost of LR would be

CostLR = C ∗m.

Here, C is the cost of dissection of a carcass (half) by the EC reference method.
It is assumed that the additional cost of the instrumental carcass measurements
is negligible. The following sample sizes are required:

n = m
{
1− (1− f)ρ̂2

}
and N =

n

f
,
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where

f = minimumof

√
c

C − c

1− ρ̂2

ρ̂2
and 1.

Here, c is the cost of dissection of a carcass (half) by the national method. These
sample sizes are based on large sample approximations. Details may be found
in Engel & Walstra (1991a,b). In the derivation it is assumed that carcasses are
either selected at random or on the basis of the instrumental measurements. The
carcasses for the sub sample are assumed to be selected according to the same
sampling scheme as the total sample. For instance, suppose that the total sample
is based on selection with three back fat classes, where boundary values are equal
to mean back fat plus or minus one standard deviation. Let the numbers in the
classes be 0.4*N , 0.2*N and 0.4*N for lean, average and fat pigs respectively.
Then a fraction n / N of the carcasses in each class are randomly chosen to obtain
the sub sample. In practise, carcasses for the sub sample could be selected on the
basis of Y ∗ as well, in that case DR can be expected to be even more accurate.
Hence, the calculations yield somewhat liberal sample sizes. Since the value of ρ
will not be very well known, it will often be a ”guesstimate” close to the lowest
value still considered likely. Consequently, some liberality in the sample sizes is
not a point of grave concern.

For example, suppose that m = 120 (the minimum required sample size for
LR according to the EC regulations). Let C/c = 5 and ρ̂ = 0.9. Then:

f =

√
1

5− 1

1− (0.9)2

(0.9)2
= 0.2422,

n = 120
{
1− (1− 0.2422)(0.9)2

}
= 46.3,

N = 46.3/0.2422 = 191.3.

Suppose that we take n = 50 and N = 200. The cost for DR with further
dissection from national to EC reference lean meat percentage is:

CostDR = 50 ∗ C + (200− 50) ∗ c = C ∗ (50 + 150 ∗ 0.2) = C ∗ 80

.
So, in this example cost by DR are reduced by (CostLR −CostDR)/CostLR ∗

100 = {(120− 80)/120} ∗ 100 = 33% relative to LR.

4.3 Two-phase updates based on reference pre-

dictors

For convenience, we present the statistical framework in the case of only one in-
strumental predictor x, say a fat depth and only one reference predictor z, say an
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approximated lean meat percentage obtained by a partial dissection. Moreover,
y will denote the response, say the lean meat percentage obtained by a reference
dissection.

In what follows, preliminaries concerning the regression models are first dis-
cussed. Then we show how minimum cost strategies are achieved under the
restrictions laid down by the EC-regulations.

4.3.1 Creating the prediction formula

Our aim is to derive the prediction formula of y by the instrumental predictor x
on the basis of the following linear regression model:

y = β0 + β1x + ε,

where ε ∼ N(0, σ) stands for the residual error, β0 denotes the offset and β1 is
the slope coefficient. However, y and x are never measured on a common sample.
Therefore, the prediction formula is achieved through two auxiliary regression
models. First, call reference model the following one:

y = γr,0 + γr,1z + εr,

where εr ∼ N(0, σr) stands for the residual error, γ0,r denotes the offset and γ1,r

is the slope coefficient.
Similarly, call scaling model the following one:

z = γs,0 + γs,1x + εs,

where εs ∼ N(0, σs) stands for the residual error, γ0,s denotes the offset and γ1,s

is the slope coefficient.
The regression experiments which are conducted to estimate the coefficients

of the auxiliary models are usually not simultaneous: first, γ0,r and γ1,r are
estimated on a sample of size nr, and then, for instance when an instrument is
candidate for authorization, γ0,s and γ1,s are estimated on another sample of size
ns.

Although it appears as very intuitive to combine transitively the auxiliary
regression equations to obtain a prediction formula for y by x, it is recalled by
Engel and Walstra (1991) that this is generally misleading. To combine properly
the regression equations, the reference model must indeed include x among its
predictors. However, provided z is a better predictor of y than x, in the sense that
(z, x) is as good a predictor as z, Causeur and Dhorne (2003) have shown that
a transitive combination of the regression equations was appropriate. Therefore,
the prediction formula can be derived as follows:

ŷ = γ̂0,r + γ̂1,rẑ,

= γ̂0,r + γ̂1,r (γ̂0,s + γ̂1,sx) ,

= γ̂0,r + γ̂1,rγ̂0,s︸ ︷︷ ︸
β̂0

+ γ̂1,rγ̂1,s︸ ︷︷ ︸
β̂1

x.
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The previous formula only gives the proper way of combining regression coeffi-
cients estimated on two separate samples. Causeur and Dhorne (2003) give the
equivalent formulæ in the more frequent case of many x variables and many z
variables and the standard deviations in the special case the auxiliary regression
equations are fitted by OLS. These standard deviations are the main support to
provide minimum costs strategies.

As it is discussed in chapter 2, the estimation of the auxiliary regression
coefficients can be performed using OLS, PLS, PCR or any other relevant method.

4.3.2 Minimum costs sampling scheme

A regression experiment is first conducted in order to have common measurements
of the response and the reference predictors. Let cyz denote the experimental cost
per sampled carcass in this regression experiment, usually the time needed to
obtain the measurements. When a prediction formula has to be assessed on the
basis of instrumental predictors, a scaling experiment is performed, which consists
in common measurements of the reference and the instrumental predictors. Call
czx the experimental cost per sampled carcass in this scaling experiment. The
overall experimental cost which is engaged for assessing the prediction formula is
therefore:

c = nrcyz + nsczx.

According to the EC-requirements, the statistical method which is used to fit the
regression model has to be at least as accurate as the usual least-squares method
on a sample of n = 120 carcasses. This kind of requirements obviously appeal
for the definition of a criterion which aim is to compare the efficiencies of a two-
phase procedure and the usual least-squares method. Provided OLS is used to
fit the auxiliary regression models, Causeur and Dhorne (2003) have proposed a
relative efficiency criterion that can be considered as the ratio of the variances
of the estimators of the regression coefficients. For instance, if we focus on the
slope coefficient b, this relative efficiency criterion turns out to be:

RE(b; n, nr, ns) =
n

nr

(
nr

ns

ρ2
yz.x + (1− ρ2

yz.x)(1 + ρ2
zx)

)
,

where ρ2
yz.x = 1 − σ2

r/σ
2 is the squared partial correlation coefficient between y

and z conditionally on x and ρ2
zx is the squared correlation coefficient between z

and x.
Provided prior values of ρ2

yz.x and ρ2
zx are available, the 120 carcasses-equiva-

lent EC-requirement is therefore transposed in the following equation:

RE(b; 120, nr, ns) = 1.

In the French context of pigs classification, the only remaining unknown of this
equation is the sample size ns since nr has been chosen previously.
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4.4 Validation issues

Many aspects of the validation of prediction formulæ have already been dis-
cussed in chapter 2. Among the recommendations that have emerged from the
discussions, the use of the RMSEP have been proposed as a validation criterion.
Therefore, in the present situation of double-sampling, validation will also be
considered according to this choice.

First, note that, on the basis of the techniques that are mentioned in section
2, it is clear that auxiliary RMSEP can be calculated. Call RMSEPy the RMSEP
related to the auxiliary model including y and RMSEPz the RMSEP related to
the auxiliary model including only z. It can be shown, at least approximately if
the sample sizes are large enough, that the global RMSEP used to validate the
prediction formula estimated by a double-sampling method can be deduced from
the following combination:

RMSEP 2 = RMSEP 2
y + γ̂2RMSEP 2

z ,

where γ stands for the slope coefficient of z in the auxiliary model including
y. In the preceding equation, not only the auxiliary RMSEP can be calculated
whatever the estimation procedure is used to fit the auxiliary models but also
the estimated slope coefficient γ̂.
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Chapter 5

Reporting to the Commission.
Protocol for the trial

By Gérard Daumas

The present EU regulation lays out:
“Part one of the protocol should give a detailed description of the dissection

trial and include in particular:

1. the trial period and time schedule for the whole authorization procedure,

2. the number and location of the abattoirs,

3. the description of the pig population concerned by the assessment method,

4. a presentation of the statistical methods used in relation to the sampling
method chosen,

5. the description of the national quick method,

6. the exact presentation of the carcasses to be used.”

These items have not been specifically discussed. Nevertheless, one can look
for the following items at the corresponding sections:

• Item 2: see section 1.2.2.

• Item 3: see section 1.1.

• Item 4: see chapters 2 and 4.
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During and after the trial
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Chapter 6

Some general comments on the
management of the trial

By Gérard Daumas

During the trial a certain number of problems can occur which could affect
the quality of the results. In general, decisions have to be taken very quickly
because of practical constraints. It is therefore very important that the bench
scientist would be aware of all the issues, inclusive the statistical issues, in order
to get an acceptable compromise.

Some of the main problems occurring in classification experiments are as
follows:

• staff unavailability,

• abattoir unavailability,

• missing pigs in some categories for selection,

• instrument failure,

• changes in some environmental parameters,

• changes in work quality,

• wrong measurements,

• mixture of joints between carcasses,

• mixture of tissues between joints,

• mixture of tissues between carcasses.

These problems can be split into 2 categories according their consequences:
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• selection of the pigs,

• data reliability.

Selection of the pigs

If there is a selection on factors (sex, breed, ) it can be difficult sometimes
to find the needed category. This can lead to proportions different as initially
planned, affecting therefore the representativeness of the sample and introducing
an overall bias.

Afterwards, this bias can be removed by a re-weighting of the observations at
the estimation stage. Nevertheless, it is important to avoid such changes in the
proportions, especially for the small categories.

When there is an over-sampling at the extremes of predictor(s) some days it
can be very difficult to find the right pigs. The risk is all the more high since
over-sampling intensity is high, the number of concerned predictors is high, the
daily number of selected carcasses is high and the slaughtering is low. This may
lead to accept some pigs with some defects, especially an uncorrect splitline.
In order to avoid a lower data reliability it is preferable to decrease the over-
sampling intensity. Indeed, the latter has only an effect on the estimators variance
; moreover, this effect is relatively small in the current designs for dissection trials.

Data reliability

Concerning the lean meat proportion (LMP)

The lean meat proportion may be affected by a lot of events for 2 reasons:

• it is not a direct measurement but a calculated variable from a lot of vari-
ables,

• the measurement of all these variables is spread over several hours.

As the LMP is very expensive, temptation is high to conserve a carcass with a
wrong measurement. These wrong measurements may affect either joint weights
or tissue weights. It is therefore very important to check the data at each stage.
After jointing a first check consists in calculating the jointing losses before starting
dissection. In case of too high losses each joint can be weighted again. The same
holds for the dissection of the 4 joints. After dissection of a joint the dissection
losses have to be calculated before throwing the different tissues in a tank where
there are mixed with the tissues of other joints and other carcasses.

Some errors are more difficult to detect when they come from a (more or
less) continuous change. For instance, the laborious dissection work can have a
poorer quality in the afternoon or at the end of the week. This can be avoided
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by the planning of a reasonable time schedule and by a supervising of the dis-
section team. Some changes in the environmental conditions, like for instance
the temperature, may affect losses and the hardness of the work. It is there-
fore recommended to write down some environmental parameters, some carcass
characteristics and in general all kind of events which could help to explain some
doubtful data observed during the data processing.

Concerning the predictors

The statistical methods used until now in the pig classification context assume
there is no error on the independent variables. In fact, this is not the case with
the actual classification instruments.

Most of these instruments measure fat and muscle depths, muscle depth being
more difficult to measure accurately. Moreover, these errors are not independent,
because there is a common limit between fat and muscle tissues. Furthermore,
some errors, especially on muscle depth, may be very high (5 or 10 mm).

But it is not always easy to immediately detect such errors. It means that
this problem can be solved with the outliers management (see chapter 7).

The most dramatic incident is the failure of the tested instrument. Replacing
equipment has to be foreseen.
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Chapter 7

Departures from the model
(lack-of-fit)

By Bas Engel

Although the average of the estimated error terms ε̂i is always 0 for LR,
lack of fit may be detected by plotting the individual estimates ε̂i (referred to as
residuals) against the predictions ŷi (often referred to as fitted values). According
to standard theory fitted values and residuals are uncorrelated for LR and nearly
so for non-linear regression. This implies that in the aforementioned residual
plot, there should be no obvious pattern, when the regression model fits the
dissection data well. If there is a pattern, this may indicate some serious departure
from the model assumptions. For instance, an increase of the absolute residuals
with an increase of the fitted values, suggests that the residual variance is not
constant. A simple remedy may be to replace observations y by log-transformed
observations log(y). However, this is not always an appropriate remedy, either
because heterogeneity of variances may remain, or because a LR model may no
longer apply after transformation. In that case the use of non-linear regression
or the use of a variance function may be considered. A curve in the residual plot
may indicate the need for a quadratic term x2 in the model. So far, there is no
evidence supplied for marked variance heterogeneity or curvi-linearity.

Since y and ŷ are strongly correlated, it is generally a better idea to supply
a plot of residuals ê against ŷ, rather than a plot of y against ŷ. Unfortunately,
the last plot has been a regular feature in many proposals so far.

Departures from normality may be apparent from a so-called probability plot
of the residuals. Residuals are ordered in increasing size and plotted against
their expected values under normality. Departures from a straight line, usually
in the form of a sigmoid curve, indicate non-normality. These plots tend to
be more informative than formal tests of significance. Non-normality is generally
considered to be a less serious problem than heterogeneity of variances or apparent
lack of additional predictors such as quadratic terms x2 in the formula.
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Chapter 8

Managing outliers

By Thierry Dhorne

8.1 Aim

The elaboration of “good” models for pig classification is achieved by two statis-
tical means:

• specifying and using models with good theoretical properties,

• adjusting the models in the best way in the best way.

Both are the major aims of the present handbook.
The last (and not the less) point is to get good datas to adjust the model.

Many things are suggested by meat scientists to obtain good datas and we will
concentrate here on the specific aspect of assessing in some way the quality of
the data obtained in a trial in order to get reliable prediction formulas.

It is important to make a difference between what is acceptable (for instance
with respect to the regulation) and what is reliable.

The aim now is then to deal with the management of both observations that:

• have a great influence on the assessment of the formula and/or

• are badly predicted by the TVM prediction formula.

8.2 The issue

As mentioned above, the problem is that quality is more or less subjective and
that two scientists could consider as different the same situation.

We will then concentrate here on the way to detect problems and leave the
decision of interpreting the problems to meat scientists.
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Let us then mention clearly the issues: what can be thought of a formula equa-
tion in some countries where one carcass, or five or twenty-five out of a hundred
is (are) really badly predicted ? Suppose that the formula for the fair carcasses
has a standard-error of let say 2, and that the bad carcasses are predicted at
random, let say with a standard-error of 3.5, to be compared with the 2.5 of the
regulation. In the three cases (if it is assumed that the mean is known), we have:

1. 1 % bad predictions:
√

99.22 + 1.3.52 = 2.02

2. 5 % bad predictions:
√

95.22 + 5.3.52 = 2.10

3. 25 % bad predictions:
√

75.22 + 25.3.52 = 2.46

and everything is all-right.
Furthermore, what can be thought of a formula established on a set of a hun-

dred carcasses and where the deletion of one, three, nine carcasses in the sample
could change the equation in a sensible way for the millions of pigs classified every
year.

The objective of this part is to evaluate the importance of these two issues
and to give some solutions to them.

8.3 Definitions

Though the statistical vocabulary is not completely established in this field some
main key-words are important.

First the topic concerned is usually defined by robustness. This topic deals
with the capacity of the predictors to resist to practical factors that could decrease
the reliability of the model essentially because they invalidate assumptions made
by the statistician to choose it.

Due to the fact that prediction equations are always obtained explicitly or
implicitly through the minimization of a criterion of discrepancy between the
real observed values and the predicted values, it is clear that these errors in the
data can generate two different negative effects:

• some observations far from the others “attracts” the model through the
minimization,

• some observations show a great discrepancy between the predicted and
observed values.

The first type of observations is usually refered as influential observations (or
leverage points), the second type as outliers.

As mentioned above these two aspects are independent in the sense that the
four situations can be encountered, namely: standard observation (neither influ-
ential nor outlying), outlier not influential, influential observation not outlying,
influential outlier.
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8.4 Statistical solutions

8.4.1 Graphical studies

It is probably the easiest way to deal with the problem as suggested by very
impressive but specific graphics proposed here and there. This approach suggests
nevertheless problems of two kinds:

• first the subjectivity of the observer and then of the procedure,

• the difficulty to generalize this approach when the model is more complex
(multivariate) and when many data sets are involved.

There was then a need to develop more technical methods to solve this problem.

8.4.2 Residuals analysis

Residuals analysis has been widely used for years in the treatment of regression
data. Unfortunately this analysis is not suited to evaluate influential observations
which has been shown above to be different with the outlier problems. Moreover
the analysis is made after classical least squares adjustment. This strategy is
somewhat paradoxical because the aim is to avoid influence of some points while
the initial estimation may be widely influenced by these points in an undetectable
way.

This points out that one single observation can pollute the other ones and
attract to itself the regression line and leads to the interest of studying the indi-
vidual influence of each point on the assessment of the regression.

8.4.3 Influence analysis

As defined previously, the influence of a single observation can be roughly defined
as the discrepancy between the prediction formulae obtained on the one hand with
the whole dataset and on the other hand without this observation. Statistical
procedures in influence analysis are mainly based on two formal interpretations
of the former definition of influence:

• individual influence can first be defined as the impact of a single observation
on the prediction procedure: this approach is consistent with the detection
of influential observations,

• influence analysis can also consist in measuring the consequence of the
deletion of a single observation on the estimated parameters of the model:
both outliers and influential observations can be pointed out throughout
this approach.
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8.4.4 Robust estimation

The naturel extension of influence analysis would be to try to study the influence
of couples of points, then triplets and so on, to avoid the joint effect of multiple
influential observations. The limit should be the number of errors of any kind
that can be made in getting the data.

This aspect has led to the notion of breakdown point corresponding to the
percentage of contaminated data sufficient to “break” the “real” regression line.
It is easy to appreciate intuitively this notion in the easier case of the estimation
of the location parameter of a data set.

Let us examine a univariate series of values and consider the departure of
some points to plus or minus infinity. It is obvious that in the case of the mean,
one single observation can pull it to plus of minus infinity, whereas the median
can be seen to resist up to nearly 50 % of the observations contaminated. It is
then said that the mean has a O % breakpoint while the median has a 50 %
breakpoint.

In the field of multiple regression it has been a challenge for years to investigate
the existence of robust regression procedures that could improve the catastrophic
break point of the usual least squares estimator.

The main ideas at the basis of such investigations are the following:

1. Though the problem seems to be quite easy for a location parameter (me-
dian versus mean), it is not so obvious that a generalization holds for regres-
sion parameters. It is known that not even a generalization of the median
is easily available for a two dimensional location parameter.

2. Furthermore even if this goal can be achieved, the example of the median
shows that protection against influential points has a cost at least in term
of variance of estimators.

3. The idea that an exhaustive procedure that could identify every subset of
influential points conveys the impression that any robust procedure should
lead to complex numberings and therefore to computer intensive procedures.

8.5 Robust estimation

The idea of robust estimation focused on the field of regression is then really
appealing. Indeed, where the classical procedures make an adjustment and then
examine the influential points with the risk that they are hidden by themselves, a
robust procedure would give an adjustment free of influential points which would
then be implicitly identified. Furthermore it could enable the examination of
outliers in a safe way.

The point is now to define such procedures.
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8.5.1 Criteria

Two generations of criteria have been proposed in the literature to achieve the
former goals. One deals with influential functions of the observations, the other
with general robust criterions.

Influence fonctions The classical least squares estimator is known to minimize
the quantity:

n∑
i=1

(Yi − Ŷi)
2 =

n∑
i=1

e2
i .

Global criterion One of the most significant result in robustness was worked
by Rousseuw and Leroy (1987). It is also a very sensitive approach for non
statisticians and therefore it can easily be understood.

The idea is simply to consider the former criterion:

n∑
i=1

(Yi − Ŷi)
2 =

n∑
i=1

e2
i ,

as its equivalent:

1/n
n∑

i=1

e2
i ,

the mean of the squares of the residuals, and then replace the mean by a more
robust quantity. Two variants have been proposed by Rousseuw and Leroy (1987):

• the median of squares:

medie
2
i ,

• the trimmed mean of squares:

h∑
i=1

e2
(i),

where e2
(i) means the ascendant ordering of the residuals and n/2 ≤ h ≤ n.

Both variants are subject to minimization with respect to the regression param-
eters, leading to so-called:

1. least median of squares estimator: LMS,

2. least trimmed squares estimator (the fraction of trim being h/n): LTS.
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8.5.2 Efficiency

The efficiency of such procedures has been studied theoretically. The LTS esti-
mator has been shown to be more efficient than the LMS estimator and to be as
efficient (up to a constant) as the classical LS estimator.

It can therefore be recommended to use the LTS estimator even with a high
level of protection i.e. 50 %.

8.5.3 Algorithm

As suspected before, the global minimum of such a quantity as trimmed squares
of the residual is not so easy to reach. Indeed iterative methods must be used
but nevertheless two points should be pointed out:

1. there exists generally many local minima to the objective function,

2. there exists no obvious initial value for an iterative method, and in partic-
ular, least squares solution is generally a bad initial value leading to a local
minimum.

Fortunately, many softwares implementation are now available and consequent
improvements have been made. Such procedures are indeed available in S/R or
SAS systems.

8.5.4 Protocol

In practice, what is to be down ?

• First accept that a part of the data may be spoiled or what is equivalent
accept to leave out part of the data in order to have more confidence on
the prediction formula.

The percentage suggested is about 5 % (former studies of the homologation
reports gives an interval of 3 to 7 %). A more precise study could be to let
the percentage vary from say 2 to 10 % in order to get a best appreciation
of the real percentage.

• Then use least trimmed squares procedures to adjust regression (or equiv-
alent other method: for PLS minimal volume estimation can be used) and
identify influent data by decreasing order of influence.

• Status then on these data (are they considered as acceptable or not ?),
some arguments should be given here and specially reference to information
obtained during the trial.

• Perform the classical (without outliers and influential observations) on the
restricted set of data.
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• Calculate the required criterion (RMSEP) with the suspicious data consid-
ered in the calculation.
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Chapter 9

Estimation and validation in
practice. Examples

By David Causeur, Bas Engel, Maria Font i Furnols and Søren Højsgaard

9.1 Available software

It would be too ambitious to pretend proposing a comprehensive list of the solu-
tions to actually run rank-reduced methods for many softwares have been edited
since the first one in the mid-1980s. This pioneering software, called LVPLS,
was for a long time the only solution for practitioners. The current version runs
in DOS and is freely distributed by Mc Ardle J. (1987). We are only intending
here to list some packages that can be used to establish prediction formulæwith
rank-reduced methods. Furthermore, we have chosen to focus on PLS packages
since OLS functions are usually included in all the statistical softwares and also
since PCR functions are most of the times delivered in the PLS packages.

Some widely spread statistical softwares such as SAS or Splus propose their
own PLS packages. For instance, the SAS system version 6.11 includes an exper-
imental PROC PLS and version 8 has the definitive one. Online documentation
(in Adobe PDF format) is available by Tobias R.D. (1997a, 1997b). At the same
time, public domain PLS procedures were also developed, initially for the non-
commercial version of Splus called R (that can be downloaded at http://cran.r-
project.org/). The idea behind R is clearly to propose a free copy of the Splus
programming environment. However, note that in the last ten years, Splus have
improved its commercial attractiveness by adopting a Windows-like aspect which
makes it possible to run some usual data analysis through toolbars and dialog
boxes instead of the programming environment. The PLS package is currently
not running through toolbars but only in the programming environment. This
package was based on Denham (1995) and can be downloaded freely (the free
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download at http://cran.r-project.org/src/contrib/Devel/ includes minimal doc-
umentation). A port of a Denham (1995)s S/S-Plus implementation is available in
the Carnegie-Mellon S archive (http://lib.stat.cmu.edu/S/), which also includes
Fortran and Matlab implementations of the algorithm.

Finally, it must be noted that GENSTAT 5 (details about this software can
be found at http://www.nag.co.uk/stats/TT soft.asp) implements PLS and also
that some other commercial software especially dedicated to PLS analysis are
until recently available. Most of the times, they enable a more detailed exami-
nation of the prediction properties. Their working environment is quite easy to
discover since all the analysis are available by toolbars, whereas SAS or R/Splus
appeals for a prior knowledge of the programming environment. As an example,
The Unscrambler from Camo Inc (www.camo.no) implements PLS, including
jackknife-based significance testing.

9.2 A worked example

9.2.1 Description of data

The ideas and models discussed below have been evaluated on a small dataset
consisting of measurements on 344 carcasses delivered to three Danish abattoirs.
At two abattoirs, 150 normal carcasses were measured. At the third abattoir
additionally 44 large carcasses were measured. The distribution of the carcasses
among the three slaughterhouses and in different weight groups is shown in Ta-
ble 9.1 together with the average LMP.

Table 9.1: Distribution of carcasses among the three slaughterhouses and in dif-
ferent weight groups and the average LMP.

Abattoir (60,70] (70,75] (75,80] (80,90] (90,105] LMP
1 35 54 43 18 0 59.2
2 35 48 41 26 0 59.7
3 0 0 0 17 27 58.7

Fat and meat depth was measured on several locations together with slaughter
weight, length and other physical characteristics. The locations of the measure-
ments are shown in Figure 9.1.

9.2.2 Doing it in R/Splus

Preliminaries: general issues on R and Splus

Most of the commands that are used in the programming environment can
roughly be described by the following generic command:
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Figure 9.1: Locations of the measurements of the 344 pig carcasses in the study.

> result <- func(arg1,arg2,...)}

where > is the usual prompt, result stand for the R/Splus object that contains
the values resulting from the application of the function func with the arguments
arg1, arg2, ... .<- is used to direct the results into the object result.

To edit the results, just type result in the commands window or, in the
case the function delivers many results, each partial result can be edited by the
commands result$part1, result$part2, ....

Importing the data

Data files coming from almost any other software dedicated to the manage-
ment or the statistical analysis of databases can be imported into Splus very eas-
ily, thanks to toolbars and dialog boxes. If data are imported by the commands
window, they are supposed to be in a text file. For instance, call EUdata.txt the
file containing the dataset, the following commands will create a R/Splus version
of this dataset:

> EUdata <- read.table("EUdata.txt",header=TRUE)

where header is an optional boolean argument that must be set to TRUE when the
first line of the data file contains the names of the variables. Some basic functions
can be used to check the success of the importing procedure. For instance, the
function dim gives the numbers of rows and columns of EUdata:

> dim(EUdata)

[1] 344 25
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Another useful example that edits the names of the variables in the data set:

> names(EUdata)

[1] "P.weight" "SEX" "P.length" "P.forb" "P.skam" "F02"

[7] "F03" "F11" "M11" "F12" "M12" "F13"

[13] "M13" "F14" "F16" "LMP96" "SL.house" "A"

[19] "B" "C" "D" "E" "F" "G"

[25] "H"

It will be helpful for the following calculations to create two separate objects
from the data set: one is called X and contains the values of the instrumental
predictors and the other one is called Y and contains the response values:

X <- EUdata[ ,c(1,3:15)]

Y <- EUdata[ ,16]

In the former commands, 14 variables have been collected in X: the first col-
umn of EUdata and the 3rd to 15th columns, whereas Y corresponds to the 16th
column.

Analysis of the redundancy

It has been mentioned above that some classical tools of exploratory data
analysis can be very useful to exhibit some kind of structure in the dependencies
between the variables. Principal Component Analysis can for instance be used to
re-organize the variables in order to point out poorly correlated blocks of variables
with high intra-block correlations. In the present situation, the re-organization is
rather intuitive since the instrumental predictors can be divided into three natural
groups: meat (M11, M12, M13) or fat (F02, F03, F11, F12, F13, F14, F16)
layers and physical characteristics (P.weight P.length P.forb P.skam).

Simple commands are available in R and Splus to re-organize the instrumental
predictors to make more obvious the natural groups of variables:

neworder <- c(5,6,7,9,11,13,14,8,10,12,1,2,3,4)

X <- X[ ,neworder]

where neworder contains the vector of permuted column indices that enables a
better exposition of the predictors. Up to now, the previous X matrix is replaced
by its re-organized version. The needed correlations can be calculated:
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> round(cor(X,Y),2)

[,1]

F02 -0.59

F03 -0.55

F11 -0.75

F12 -0.74

F13 -0.70

F14 -0.76

F16 -0.73

M11 0.26

M12 0.23

M13 0.31

P.weight -0.09

P.length -0.05

P.forb -0.01

P.skam -0.09

> round(cor(X),2)

F02 F03 F11 F12 F13 F14 F16 M11 M12 M13 P.w P.l P.f P.s

F02 1.00 0.76 0.61 0.62 0.63 0.60 0.64 0.11 0.14 0.06 0.45 0.20 0.16 0.16

F03 0.76 1.00 0.61 0.61 0.63 0.59 0.61 0.15 0.19 0.08 0.48 0.27 0.24 0.19

F11 0.61 0.61 1.00 0.84 0.82 0.74 0.77 0.04 0.08 -0.03 0.28 0.04 0.04 0.02

F12 0.62 0.61 0.84 1.00 0.83 0.77 0.77 0.04 0.01 -0.03 0.33 0.07 0.10 0.06

F13 0.63 0.63 0.82 0.83 1.00 0.75 0.77 0.13 0.11 0.02 0.40 0.14 0.16 0.09

F14 0.60 0.59 0.74 0.77 0.75 1.00 0.86 0.03 0.05 0.02 0.27 0.05 0.05 0.00

F16 0.64 0.61 0.77 0.77 0.77 0.86 1.00 0.07 0.07 0.05 0.38 0.14 0.15 0.09

M11 0.11 0.15 0.04 0.04 0.13 0.03 0.07 1.00 0.87 0.86 0.56 0.26 0.36 0.16

M12 0.14 0.19 0.08 0.01 0.11 0.05 0.07 0.87 1.00 0.90 0.47 0.18 0.27 0.09

M13 0.06 0.08 -0.03 -0.03 0.02 0.02 0.05 0.86 0.90 1.00 0.48 0.20 0.28 0.10

P.weight 0.45 0.48 0.28 0.33 0.40 0.27 0.38 0.56 0.47 0.48 1.00 0.71 0.75 0.52

P.length 0.20 0.27 0.04 0.07 0.14 0.05 0.14 0.26 0.18 0.20 0.71 1.00 0.90 0.83

P.forb 0.16 0.24 0.04 0.10 0.16 0.05 0.15 0.36 0.27 0.28 0.75 0.90 1.00 0.75

P.skam 0.16 0.19 0.02 0.06 0.09 0.00 0.09 0.16 0.09 0.10 0.52 0.83 0.75 1.00

where round(...,2) is an editing function that prints numbers in a rounded
version with 2 digits.

Note that intra-block correlations are around 0.7 for fat layers, 0.9 for meat
layers and 0.7 for physical characteristics, whereas inter-block correlations are
rather low as expected. As usually observed in the pigs classification data, the
LMP is highly correlated with the fat layers, poorly correlated with the meat
layers and almost non-correlated with the physical characteristics.

Running OLS

First, let us edit a short report of the OLS fit with all the instrumental
predictors in the regression model:

> EUdata.ols <- lsfit(X,Y)
> ls.print(EUdata.ols)
Residual Standard Error = 1.6477, Multiple R-Square = 0.7987
N = 344, F-statistic = 93.2198 on 14 and 329 df, p-value = 0

coef std.err t.stat p.value
Intercept 82.7738 3.6912 22.4249 0.0000

F02 -0.2116 0.0645 -3.2787 0.0012
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F03 -0.0525 0.0507 -1.0362 0.3009
F11 -0.2359 0.0590 -3.9965 0.0001
F12 -0.1606 0.0668 -2.4050 0.0167
F13 -0.0858 0.0695 -1.2347 0.2178
F14 -0.3382 0.0608 -5.5602 0.0000
F16 -0.1315 0.0536 -2.4550 0.0146
M11 0.0367 0.0373 0.9842 0.3257
M12 0.0089 0.0342 0.2612 0.7941
M13 0.0933 0.0373 2.5010 0.0129

P.weight 0.1301 0.0247 5.2743 0.0000
P.length -0.0326 0.0438 -0.7458 0.4563

P.forb -0.0649 0.0496 -1.3093 0.1913
P.skam -0.1811 0.0848 -2.1358 0.0334

It clearly appears in the former report that some kind of redundancy in the
instrumental predictors could be avoided by selecting a subset of relevant pre-
dictors. Some native functions are dedicated to such a selection in R and Splus
provided the validation criterion is either the Mallows Cp, the R2 or its adjusted
version. However, these functions are not easy to adapt to the validation criterion
recommended in section 2.3. Therefore, we have created our own new functions
that first calculate the RMSEP criterion by a full cross-validation method and
then rank the subset of predictors relative to their predictive ability. These func-
tions are provided in appendix B. First, let us calculate the RMSEP obtained by
OLS with all the predictors:

> rmsep.ols(X, Y)

[1] 1.6928

Now, let us investigate in all the possible subsets of predictors to look for the
best ones:

> bestones <- bestrmsep.ols(X, Y)

> bestones$labels

$"1":

[1] "F14"

$"2":

[1] "F14" "M13"

$"3":

[1] "F11" "F14" "M13"

$"4":

[1] "F11" "F14" "M13" "P.skam"

$"5":

[1] "F02" "F11" "F14" "M13" "P.skam"

...

> round(bestones$minrmsep,2):
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1 2 3 4 5 6 7 8 9 10 11 ...

2.36 2.04 1.82 1.78 1.76 1.72 1.70 1.69 1.68 1.68 1.68 ...

Visualizing the trace of the minimal RMSEP for subsets of equal number of
predictors is possible by the following commands:

> plot(1:14,bestones$minrmsep,type="b",pch=3,

xlab="Number of predictors",ylab="RMSEP",

main="Best subsets of predictors")

> text(1:4,bestones$minrmsep[1:4],bestones$labels[1:4])

Best subsets of predictors

Number of predictors
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8
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F14,M13

F11,F14,M13
F11,F14,M13,P.skam

Figure 9.2: Trace graph to select the best subset of instrumental predictors

The graph produced by the previous command is displayed in figure 9.2.
With respect to this graph, we would personally recommend to consider that 4
predictors have to be kept in the chosen model, since the gain resulting from
adding some other predictors is not so important. According to this choice, the
calculations point out the subset containing F11, F14, M13 and P.skam as the
best one with a RMSEP equal to 1.78.

Let us edit a short report of the OLS fit with only these 4 predictors in the
regression model:

> best.ols <- lsfit(X[, bestones$subsets[[4]]], as.numeric(Y))
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> ls.print(best.ols)

Residual Standard Error = 1.7668, Multiple R-Square = 0.7615

N = 344, F-statistic = 270.5294 on 4 and 339 df, p-value = 0

coef std.err t.stat p.value

Intercept 74.5122 2.5803 28.8778 0

F11 -0.4002 0.0425 -9.4191 0

F14 -0.5606 0.0459 -12.2196 0

M13 0.1802 0.0149 12.0640 0

P.skam -0.2057 0.0494 -4.1658 0

Running PLS

The PLS package based on Denham (1994) is used here. First, let us chose
the proper number of latent variables.

> LMPpls <- pls(X,Y,validation="CV",grpsize=1)

> LMPpls$validat$RMS

[,1]

1 LV’s 1.989200

2 LV’s 1.838436

3 LV’s 1.758272

4 LV’s 1.678250

5 LV’s 1.706633

6 LV’s 1.693239

7 LV’s 1.693916

8 LV’s 1.691238

9 LV’s 1.692060

10 LV’s 1.693143

11 LV’s 1.692832

12 LV’s 1.692802

13 LV’s 1.692800

14 LV’s 1.692800

The previous results gives the RMSEP calculated by the leave-one-out method
for every possible number of PLS components. Visualizing the trace of the mini-
mal RMSEP for different number of PLS components is possible by the following
command:

> plot(1:14,LMPpls$validat$RMS,type="b",pch=3,

xlab="Number of latent variables",ylab="RMSEP")
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Figure 9.3: Trace graph to select the best number of PLS components

The graph produced by the previous command is displayed in figure 9.3. With
respect to this graph, it can be recommended to consider that 4 latent variables
have to be kept in the final model. According to this choice, the calculations
gives a RMSEP equal to 1.68.

The estimated slope coefficients of the prediction formula are obtained by the
following command:

> round(LMPpls$training$B[, , 4], 3)

[1] -0.112 -0.108 -0.216 -0.170 -0.141 -0.231 -0.212 0.062

[9] 0.002 0.079 0.139 -0.085 -0.044 -0.063

Running PCR

The PCR functions that are used here are also provided in the PLS package
based on Denham (1994). First, let us chose the proper number of latent variables.

> LMPpcr <- pcr(X,Y,validation="CV",grpsize=1)

> LMPpcr$validat$RMS

[,1]

1 LV’s 3.609532

2 LV’s 2.965700
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3 LV’s 1.898612

4 LV’s 1.672098

5 LV’s 1.677329

6 LV’s 1.681840

7 LV’s 1.685620

8 LV’s 1.691075

9 LV’s 1.696127

10 LV’s 1.703245

11 LV’s 1.695460

12 LV’s 1.684851

13 LV’s 1.690075

14 LV’s 1.692800

Visualizing the trace of the minimal RMSEP for different number of PCR
components is possible by the following command:

> plot(1:14,LMPpcr$validat$RMS,type="b",pch=3,

xlab="Number of latent variables",ylab="RMSEP")
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Figure 9.4: Trace graph to select the best number of PCR components

As it was mentioned in chapter 2, the computation of the PCR components do
not directly intend to provide the best predictions. This results in the fact that
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the PCR prediction model with one or two components are obviously worse than
those created with PLS. However, if 4 components are finally kept in the PCR
model, as suggested by figure 9.4 the predictive ability of the resulting model,
with RMSEP=1.67, is close to the PLS solution.

The estimated slope coefficients of the prediction formula are obtained by the
following command:

> round(LMPpcr$training$B[, , 4], 3)

[1] 0.130 -0.089 -0.036 -0.040 -0.086 -0.123 -0.213 0.086

[9] -0.167 -0.005 -0.150 0.070 -0.205 -0.230

The near-equivalence between the predictive abilities of OLS, PLS and PCR in
the present case is illustrated by the graphs produced by the following commands
and displayed in figures 9.5, 9.6, 9.7:

> plot(Y,Y-best.ols$residuals,xlab="Observed",

ylab="Predicted",main="OLS",xlim=c(45,70),ylim=c(45,70))

> plot(Y,LMPpcr$training$Ypred[,,4],xlab="Observed",

ylab="Predicted",main="PCR",xlim=c(45,70),ylim=c(45,70))

> plot(Y,LMPpls$training$Ypred[,,4],xlab="Observed",

ylab="Predicted",main="PLS",xlim=c(45,70),ylim=c(45,70))
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Figure 9.5: Observed LMP vs. Predicted values
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Figure 9.6: Observed LMP vs. Predicted values
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Figure 9.7: Observed LMP vs. Predicted values
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9.2.3 Doing it in SAS

By Maria Font i Furnols

A. Multiple regression

A procedure used to do multiple regression is PROC REG. Suppose the SAS data
set is ptrain (located in the temporary library work). To regress LMP (lmp)
against the different carcass measurements the following instructions are needed:

proc reg data=ptrain;
model lmp=P_WEIGHT P_LENGTH P_SHOULDER P_PELVIC

F02 F03 F11 M11 F12 M12 F13 M13 F14 F16;
run;

The SAS output is the following:
The REG Procedure

Model: MODEL1

Dependent Variable: LMP

..................

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 82.77382 3.69116 22.42 <.0001

P_WEIGHT 1 0.13012 0.02467 5.27 <.0001

P_LENGTH 1 -0.03264 0.04376 -0.75 0.4563

P_shoulder 1 -0.06490 0.04957 -1.31 0.1913

P_pelvic 1 -0.18112 0.08480 -2.14 0.0334

F02 1 -0.21163 0.06455 -3.28 0.0012

F03 1 -0.05250 0.05066 -1.04 0.3009

F11 1 -0.23591 0.05903 -4.00 <.0001

M11 1 0.03667 0.03726 0.98 0.3257

F12 1 -0.16058 0.06677 -2.40 0.0167

M12 1 0.00895 0.03424 0.26 0.7941

F13 1 -0.08583 0.06952 -1.23 0.2178

M13 1 0.09329 0.03730 2.50 0.0129

F14 1 -0.33818 0.06082 -5.56 <.0001

F16 1 -0.13148 0.05356 -2.46 0.0146

The equation obtained is the following:

lmp= 82.77382 + 0.13012·P_WEIGHT .... - 0.13148·F16

A.a. Methods to select the model. The variables to be included in the
model can be selected in order to keep those that have a higher influence and to
drop those less important. SAS has the option of different methods to look at it.
This can be added as an option after the model and can be, among others the
following:

/selection=stepwise

/selection=rsquare

/selection=cp (Mallow’s Cp statistic)

The option none is the default and uses the full model. No one of these models
selects for the best RMSEP.
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A.b. Calculation of the RMSEP. After the model statement it can be
added the option /PRESS that let us to have this value in the outset dataset:

proc reg data=ptrain outest=value;

model lmp=P_WEIGHT P_LENGTH P_SHOULD P_PELVIC F02 F03 F11 M11 F12

M12 F13 M13 F14 F16 / PRESS;

run;

HER

The PRESS obtained was: 985.757. To obtain the RMSEP it is necessary to do:

RMSEP =

√
PRESS

n

or to run the following:

data rmsep;

set value;

RMSEP=SQRT(_PRESS_/344); /*adapt the n in each case*/

proc print; VAR _press_ RMSEP;

run;

So, the RMSEP is 1.69280.

B. Partial least squares regression

In SAS version 8, PLS can be made using the PLS procedure. A system of macros
can be used with PROC PLS to produce high-resolution plots for the model.
These macros can be find in the file plsplot (plsplot, 2003) that can be obtained
in the following address: http://ftp.sas.com/techsup/download/stat/. In
the file plsplote (plsplote, 2003) in the same web site, and in the SAS v. 8
Manual (included in the SAS program) an example of PROC PLS statement can
be found. Below, PLS with the example data.

B.a. How to start with PLS Again assume that data are in the SAS data
set ptrain in the temporary work directory in SAS. The PLS procedure for the
ptrain data is the following:

proc pls data=ptrain outmodel=est1 method=PLS;
model lmp= P_WEIGHT P_LENGTH P_SHOULD P_PELVIC F02 F03 F11 M11 F12

M12 F13 M13 F14 F16;
output out=outpls predicted = yhat1

yresidual = yres1
xresidual = xres1-xres127
xscore = xscr
yscore = yscr
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stdy=stdy stdx=stdx h=h
press=press t2=t2 xqres=xqres yqres=yqres;

run;

In the proc pls procedure the number of factors to be extracted can be
specified (lv or nfac option). If not specified pls extracts as many factors as
input factors. After the outmodel option, the name for a data set to contain
information about the fit model has to be written (for instance: est1).

By default, PLS is performed with responses and predictors that are centered
and scaled before fitting. If noscale is added after proc pls the scaling is not
performed, as well as the centering if nocenter is added.

If the

METHOD (method=factor-extraction-method)

option is not specified, by default PLS is the factor extraction method. Of
course it can also be specified method=pls.

If the output out option is included (optional), the predictions, residuals,
scores and other information can be found in the out data set (named outpls in
the example). These values can be used later on to detect data irregularities.

The table displayed from this PLS procedure is the following:

The PLS Procedure

Percent Variation Accounted for

by Partial Least Squares Factors

Number of Extracted Model Effects Dependent

Variables

Factors Current Total Current Total

1 37.8501 37.8501 71.5594 71.5594

2 28.2036 66.0536 5.1801 76.7395

3 13.6456 79.6992 1.3162 78.0557

4 5.5932 85.2924 1.4023 79.4580

5 3.5230 88.8154 0.2825 79.7405

6 1.6259 90.4413 0.1205 79.8610

7 2.1442 92.5855 0.0045 79.8654

8 1.4419 94.0274 0.0008 79.8663

9 1.3820 95.4094 0.0001 79.8663

10 1.1314 96.5408 0.0000 79.8663

11 0.8361 97.3769 0.0000 79.8663

12 0.7891 98.1660 0.0000 79.8663

13 0.9231 99.0891 0.0000 79.8663

14 0.9109 100.0000 0.0000 79.8663

In this results it is obtained how much predictor and response variation is
explained by each PLS component. It can be seen that the percentage of variation
in the dependent variable does not change a lot after the first factors. Next step
is to select the number of extracted factors by cross-validation.

B.b. Selection of the number of factors: cross-validation, press statis-
tic. In order to validate the model and choose the number of PLS compo-
nents some forms of cross-validation can be used. Cross-validation is a validation
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method where some samples are kept out of the calibration and used for predic-
tion. This is repeated until all samples have been kept out once and the overall
capability of the model can be measured. There are several different types of
cross-validation that can be done: block, split, random, test set and one. The
recommended is the one-at-a time or leave-one-out cross validation, which is the
cross validation SAS performs by default. However, it also can be specified after
the option cv, as cv=one.

After the cross-validation the number of extracted factors can be determined
as the one that present the minimum root mean PRESS.

Sometimes models with fewer factors have PRESS statistics that are only
marginally larger than the absolute minimum. Although cross-validation helps
in selecting the number or PLS components, it should not be used blindly, because
sometimes it can overfit the data, which means it fits the observations used in
the modelling well but will predict new observations poorly.

Proc pls has the option (cvtest) to apply van der Voet’s test in order to
test whether this difference is significant. By default cvtest uses Hotelling’s T 2

statistic as a test statistic for the model comparison. If stat=PRESS is written
in parentheses after this option, PRESS statistic is used. The default cut-off
probability to consider significant difference is 0.1, but it can be changed (option
pval=n in parenthesis after cvtest option).

An example of proc pls that uses one-at-a-time cross-validation is showed
bellow. In that example Hotelling’s T 2 test (a) or PRESS test (b) is performed
in order to know the number of extracted factors. Both can be done and results
can be compared.

(a) proc pls data=ptrain outmodel=est1 method=pls cv=one cvtest;
(b) proc pls data=ptrain outmodel=est1 method=pls cv=one cvtest(stat=PRESS);

The results are the following:

(a) Cross Validation for the Number of Extracted Factors

Number of Root

Extracted Mean Prob >

Factors PRESS T**2 T**2

0 1.002915 90.55304 <.0001

1 0.539445 18.51642 <.0001

2 0.490167 4.537484 0.0280

3 0.4792 1.535283 0.2290

4 0.46998 0.009844 0.9180

5 0.469683 0 1.0000

6 0.470811 0.354835 0.5580

7 0.470861 0.3668 0.5490

8 0.471032 0.467607 0.4850

9 0.471233 0.620087 0.4180

10 0.471354 0.717061 0.3900

11 0.471387 0.74558 0.3860

12 0.471388 0.746142 0.3850

13 0.471388 0.746366 0.3850

14 0.471388 0.746383 0.3850

96



Chapter 9. Estimation and validation in practice. Examples

Minimum root mean PRESS 0.4697

Minimizing number of factors 5

Smallest number of factors with p > 0.1 3

(b) Cross Validation for the Number of Extracted Factors

Number of Root

Extracted Mean Prob >

Factors PRESS PRESS

0 1.002915 <.0001

1 0.539445 <.0001

2 0.490167 0.0130

3 0.4792 0.1050

4 0.46998 0.4800

5 0.469683 1.0000

6 0.470811 0.2850

7 0.470861 0.2800

8 0.471032 0.2490

9 0.471233 0.2190

10 0.471354 0.2050

11 0.471387 0.1990

12 0.471388 0.1990

13 0.471388 0.1990

14 0.471388 0.1990

Minimum root mean PRESS 0.4697

Minimizing number of factors 5

Smallest number of factors with p > 0.1 3

In both cases the number of extracted factors is 3, so we obtain the following
percentage of variance accounted for :

Number of Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 37.8501 37.8501 71.5594 71.5594

2 28.2036 66.0536 5.1801 76.7395

3 13.6456 79.6992 1.3162 78.0557

B.c. Detection of irregularities in the data: possible outliers. By means
of the plots and other variables obtained using the SAS macros cited above, some
outliers can be selected. First of all, the file plsplot, which includes the macros,
has to be run, in order to have them in the temporal library ”works”. Before
preparing the following plots some parameters have to be defined:

%global xvars yvars predname resname xscrname yscrname num_x num_y lv;

%let xvars= P_WEIGHT P_LENGTH P_SHOULD P_PELVIC F02 F03 F11 M11 F12 M12 F13 M13 F14 F16;

%let yvars= lmp;

%let ypred=yhat1; Predicted values for responses

%let yres=yres1; Residuals for responses

%let predname=yhat;

%let resname=res;

%let xscrname=xscr; Names of scores in output data set

%let yscrname=yscr;

%let num_y=1; Number of variables in the data set

%let num_x=14;

%let lv=3; Number of extracted factors

as well as the n:
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data ptrain;

set ptrain;

n=_N_;

run;

Plot X-score vs. Y-score. PLS algorithms choose successive orthogonal fac-
tors that maximize the covariance between each X-score and the corresponding
Y-score. For a good PLS model, the first few factors show a high correlation
between the X- and Y-scores. The correlation usually decreases from one factor
to the next.

The relationship between X-scores and Y-scores is a summary of the relation-
ship between X and Y along a specific model component. This relationship can
be visualized calling the following macro:

%plot_scr(outpls);

Figure 9.8 plots X-score vs. Y-score for the first extracted factor. The same
plot but for the second and third extracted factors are also obtained (results
not showed). X- and Y-scores are highly correlated for the first extracted factor
but somewhat less correlation for the second component, and much more less
correlation for the third. For the first factor, observation 187 is the one with less
correlation between scores, but this is not extreme in the other plots.

Figure 9.8: X-scores vs. Y-scores for the first extracted factor

Plot X-scores against each other. To check for irregularities in the predic-
tors, such as outliers or distinct groupings, we should plot the X-scores against
each other. It can be done using the following statement to call the macro.

%plotxscr(outpls,max_lv=3);
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The plot of the first and second X-scores is shown in Figure 9.9. This plot
appears to show most of the observations close together, with a few being more
spread out with larger negative X-scores for component 1. There are not any
distinct grouping patterns in the plot, which would indicate some kind of sub-
populations.

Figure 9.9: First and second X-scores.

Residual plots and normal quantile plots. These plots help in detecting
outliers that might be harming the fit; also help in detecting non-linearities or
lack of fit, non-normality, autocorrelations, and heteroscedasticity, all of which
can cause various problems in constructing confidence and tolerance bounds for
predictions. The ideal residual plot presents the residuals randomly distributed,
free from systematic trends. In an ideal normal plot, the points fall on a straight
line. It is possible to produce the plots of residuals versus predicted values and
the normal quantile plot of the residuals calling the following macros respectively.

%res_plot(outpls);

%nor_plot(outpls);

Figure 9.10 shows the residuals versus the predicted lean meat percentage values.
This plot shows nothing unusual.

The normal quantile plot of lean meat percentage residuals (Figure 9.11)
shows a distribution in which some observations are more extreme at the lower
and higher end.

Euclidean Distances. Another way to check for outliers is to look at the
Euclidean distance from each point to the PLS model in both, X and Y . No
point should be dramatically farther from the model than the rest. If there is a
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Figure 9.10: Residuals versus predicted lean meat percentage values.

Figure 9.11: Normal quantile plot of lean meat percentage residuals.

group of points that are all farther from the model than the rest, maybe they have
something in common and should be analyzed separately. The next statement
computes and plots these distances to the model:

%get_dmod(outpls,dsdmod=distmd,qresname=qres,id=n);

proc gplot data=distmd;

plot dmodx*n;

plot dmody*n;

symbol1 i=needless v=dot;

symbol2 i=needless v=dot;

run;
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The plots for the Euclidean distances for x-variable is reproduced in Figure 9.12
(results not showed for the y-variable).

Figure 9.12: Euclidean distances from the X-variables to the model.

With the plot it is difficult to identify the samples, so, if it is necessary to
identify some samples in order to remove them, it would be good to output the
value of these distances. It can be done with the following statement:

proc print data=distmd; run;

In the first plot some samples are higher than the others (212,320 and 285),
but not dramatically higher. In the second one (not showed), sample 164 is the
highest.

It is always difficult to decide if any sample is an outlier. SAS do not give
any criteria to select them. If we look at the plot (Figure 9.12) only sample 164
(only in the first one) is far from the others.

It is necessary to check the raw data in order to know if there were a problem
in it. In that case it would be a good exercise to consider sample 164 as an
outlier, drop down this sample and repeat the PLS analysis in order to look at
the new results.

Nevertheless in this example we are going to let this observation in the data
set.

B.d. Selection of the explanatory variables. Plots of the weights give the
direction toward which each PLS factor projects. They show which predictors
are most represented in each factor. Those predictors with small weights are less
important than those with large weights (in absolute value).
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Plot X-weights and X-loadings. The X-weights W represent the correlation
between the X-variables and the Y-scores. The Y-loadings represent the corre-
lation between the lmp (Y-variable) and the X-scores. The X-loadings represent
how much the X-variable contributes to a specific model component. The X-
loadings and X-weights are usually very similar to each other. To produce the
X-weights plots, first a macro that compute the weights for each PLS component
has to be called and then, the macro that plots the X-weights. So, the following
statements:

%get_wts(est1,dsxwts=xwts);

%plot_wt(xwts,max_lv=3);

It is also possible to plot the X-loadings, with the following statement, but the
results are similar to those obtained for the X-weights and they are not presented.

%getxload(est1,dsxload=xloads);

%pltxload(xloads,max_lv=3);

One of the results of these macros is plot in Figure 9.13 (previously arranged)
(the plot of the X-weights for the 2nd and 3rd X-scores are not presented).

Figure 9.13: First and second X-weights.

The plot of the X-weights shows three clusters of variables. One of them com-
posed by the different fat thickness measurements (F), the other for the muscle
thickness measurements (M) and the last one for the physical characteristics (P).
The weight of the carcass is not clearly defined in any of these clusters. Physical
variables are situated nearly zero for the first factor. So, they add little to the
model fit (first axis) however they had some importance in the second or third
factors. The plot helps in the visualization of the weight of the variables but
it would be better to have a more subjective method to decide which variables
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should be drop out of the model. SAS User’s Guide (included in the SAS pro-
gram) suggests another method to determine if any factor has to be removed,
using the regression coefficients and the variable importance for the prediction,
explained in the next point.

Regression coefficients (B) and variable importance for the projection
(VIP). In order to determine which factors to eliminate from the analysis, SAS
proposes to look at the regression coefficients in the B (PLS) matrix and at the
Variable Importance for the Projection (VIP) of each factor. The regression
coefficients represent the importance each factor has in the prediction of the lean
meat percentage. The VIP represents the value of each autofom variable in fitting
the PLS model for both predictors and responses.

The following statement obtains B coefficients and VIP values and produces
a list of them:

%get_bpls(est1,dsout=bpls);

%get_vip(est1,dsvip=vip_data);

data eva1; merge bpls vip_data; run;

proc print data=eva1; run;

Following SAS User’s Guide instructions, if a predictor has a relatively small
coefficient (in absolute value) and a small value of VIP (Wold, (1994), cited
by SAS User’s Guide considers less than 0.8 to be ”small”), then it is a prime
candidate for deletion.

The results are the following (marked with two asterisks variables with low
values of B1 and VIP and with one asterisk variables with only low levels of VIP):

Obs X_VAR B1 VIP

1 P_WEIGHT 0.08619 0.52406 **

2 P_LENGTH -0.03503 0.28177 **

3 P_SHOULD -0.01391 0.28278 **

4 P_PELVIC -0.08579 0.35822 **

5 F02 -0.09529 1.12025

6 F03 -0.07165 1.06235

7 F11 -0.16942 1.41771

8 M11 0.12408 0.66437 *

9 F12 -0.14545 1.40113

10 M12 0.10257 0.60322 *

11 F13 -0.12098 1.32585

12 M13 0.13524 0.73518 *

13 F14 -0.19579 1.43623

14 F16 -0.15902 1.38373

The physical variables are those with low VIP value (¡0.8) and the lowest
coefficient values. This result suggest that they can be kept out of the model and
are in accordance with Figure 9.13. Nevertheless these variables are important
for the 2nd or 3rd components (plot not showed), so they will be kept in the
model. In case to keep them out of the model, the PLS has to be repeated for
the reduced model.
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B.e. Regression equation. In the point B.d, the regression coefficients were
found. However, these coefficients are the parameters estimates for centered and
scaled data. It is necessary to make a transformation of the matrices in order to
obtain the parameter estimates of the raw data, so, the data obtained directly
from the KC and the physical measurements.

In SAS version 8.0, there is an option that gives you these coefficients directly.
This option does not exist in version 6.1. In order to obtain these coefficients
/solution has to be added after the model, as is showed below.

proc pls data=ptrain outmodel=est1 method=PLS lv=3;

model lmp= P_WEIGHT P_LENGTH P_SHOULDER P_PELVIC

F02 F03 F11 M11 F12 M12 F13 M13 F14 F16

/solution;

run;

In version 8 it is also possible to obtain the details of the fitted model for each
successive factor (option details in the proc pls statement). The equation
obtained has the following estimated parameters:

Intercept 74.75168808

P_WEIGHT 0.03880723

P_LENGTH -0.02133746

P_SHOULD -0.01079795

P_PELVIC -0.15875736

F02 -0.14454850

F03 -0.08501179

F11 -0.18064572

F12 -0.17497353

F13 -0.15735502

F14 -0.22559589

F16 -0.15410603

M11 0.07759910

M12 0.05118159

M13 0.07544520

The centered and scaled parameters are

Intercept 0.0000000000

P_WEIGHT 0.0861931107

P_LENGTH -.0350321806

P_SHOULD -.0139076643

P_PELVIC -.0857945001

F02 -.0952859962

F03 -.0716460553

F11 -.1694195692

F12 -.1454493558

F13 -.1209773093

F14 -.1957865229

F16 -.1590170073

M11 0.1240823100

M12 0.1025652907

M13 0.1352409513

with a minimum root mean PRESS of 0.4792.
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B.f. RMSEP SAS calculates the PRESS dividing by n − 1. It implies that
the root mean PRESS (RMPRESS) has not exactly the same result as RMSEP
calculated as explained before in this handbook. However this can be calculated
by means of the following operations:

1. Calculate the PRESS from the Root mean RMPRESS given by SAS as:

PRESS = n(RMPRESS)2

2. Change the divisor of the PRESS (calculated by n− 1) and obtain the new
PRESS calculated dividing by n (say NPRESS):

NPRESS =
n− 1

n
PRESS

3. Find the RMSEP as the root mean of the new PRESS

RMSEP =

√
NPRESS

n
.

Otherwise, the macro provided in appendix B can be used.
After running the macro it is necessary to call it and the following statement

have to be done in our case:

%rmsepls(ptrain,sel_lv=3);

The result obtained is the following

rmsep

1.72085

B.g. Prediction for the remaining observations. In order to make predic-
tions for another set of data (say test) the last equation can be used. It is also
possible to obtain the predicted values directly from SAS, appending the test set
to the training set with missing values for the responses and specifying the p or
predicted option in the output statement. After that it is possible to check the
predictions based on the model against their actual values in order to check the
validity of the model.

To analyse the results and to check if there is a pattern between the set used
to obtain the model (ptrain set) and the predicted values (test set) it is possible
to represent again the Euclidean distances. Also, to study these predictions, the
plot of the predicted lean meat % with respect to the lean meat percentage can
help. In that case, it would help if the samples from the set ptrain used for
calibration are plotted with a symbol, say ’c’, and samples from the set ptest

used for validation can be plotted with another symbol, say ’v’.
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C. Principal component regression.

The way to do the PCR in SAS is the same as the PLS but specifying the method.
The program to do it, centering and scaling previously, and to find the number
of extracted factors would be the following:

proc pls data=ptrain method=pcr outmodel=est1 cv=one cvtest; model

lmp=P_WEIGHT P_LENGTH P_SHOULDER P_PELVIC F02 F03 F11 M11 F12 M12

F13 M13 F14 F16;

output out=outpls predicted = yhat1

yresidual = yres1

xresidual = xres1-xres127

xscore = xscr

yscore = yscr

stdy=stdy stdx=stdx h=h

press=press t2=t2 xqres=xqres yqres=yqres;

run;

The result with the example data was:

The PLS Procedure

Cross Validation for the Number of Extracted Factors

Number of Root

Extracted Mean Prob >

Factors PRESS T**2 T**2

0 1.002915 90.97538 <.0001

1 0.775435 64.70637 <.0001

2 0.53262 16.94419 <.0001

3 0.497499 7.80227 0.0060

4 0.493226 6.455032 0.0140

5 0.489598 5.552566 0.0160

6 0.471513 0.361837 0.5620

7 0.472875 0.7236 0.4060

8 0.473043 0.802246 0.3820

9 0.475135 1.738072 0.1940

10 0.47027 0.334039 0.5780

11 0.471133 0.825394 0.3550

12 0.468286 0 1.0000

13 0.46984 27.47782 <.0001

14 0.471388 46.51094 <.0001

Minimum root mean PRESS 0.4683

Minimizing number of factors 12

Smallest number of factors with p > 0.1 6

The PLS Procedure

Percent Variation Accounted for by Principal Components

Number of

Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 41.6880 41.6880 40.7726 40.7726

2 25.7537 67.4417 31.3812 72.1538

3 14.9702 82.4119 3.7603 75.9141

4 4.6045 87.0164 0.5603 76.4744

5 2.6327 89.6491 0.5125 76.9869

6 2.3022 91.9513 1.7806 78.7675
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It can be seen than in that case the number of extracted factors are 6, as well
as if PRESS statistic was used as a criteria (results not showed).

In PCR the same plots and tests as PLS can be done to detect irregularities
in the data, select the regression parameters and obtain the regression equation.

The regression equation obtained with PCR method, with 6 extracted factors,
has the following parameters:

LMP

Intercept 74.66894502

P_WEIGHT 0.06860239

P_LENGTH -0.00604778

P_shoulder 0.04828023

P_pelvic -0.35064071

F02 -0.13894244

F03 -0.06848733

F11 -0.18899734

M11 0.07811813

F12 -0.17066883

M12 0.03462094

F13 -0.13945642

M13 0.04466358

F14 -0.25906075

F16 -0.18755636

If we would like centered and scaled parameters the coefficients are:
Intercept 0.0000000000

P_WEIGHT 0.1523698811

P_LENGTH -.0099293343

P_SHOULD 0.0621845389

P_PELVIC -.1894907076

F02 -.0915904913

F03 -.0577196069

F11 -.1772521841

F12 -.1418710080

F13 -.1072165445

F14 -.2248294677

F16 -.1935333174

M11 0.1249122430

M12 0.0693785849

M13 0.0800626705

with a minimum root mean PRESS of 0.471513.
RMSEP can be calculated as explained for the PLS or running the macro

rmsepcr provided in appendix B:

%rmsepcr(ptrain,sel_lv=6);

The result obtained is the following

rmsep

1.69325

9.3 Implementing cost saving methods

9.3.1 Double regression

Below a GenStat (2000) program and output are presented that illustrate the use
of double regression (DR). A SAS procedure is also available by Daumas (1994).
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The data are fictional and obtained by simulation. In the example a total sample
size of N = 200 and a sub sample size of n = 50 are chosen. The samples are
random. Apart from minor details that are typical for options and parameters
in GenStat, the program is largely self-explanatory and transcription to another
statistical language is straightforward. The standard errors of estimates and
approximate degrees of freedom are calculated by the approximations presented
in Engel and Walstra (1991a). Somewhat more complicated expressions for the
standard errors, that are exact under normality assumptions, are presented by
Causeur and Dhorne (1998).

For simplicity the example comprises only one prediction variable, e.g. a fat
depth measurement. An informal derivation of the standard errors is sketched
below. Extension to the case of several prediction variables is straightforward.
We will derive the standard error of the coefficient B of x in the final prediction
formula. The two regressions that are combined in DR are:

Y∗ = a + bx + δ and Y = α + βx + γY∗ + ε,

where δ and ε denote the error terms. The regression of interest is:

Y = A + Bx + e,

where e is the error term. The expression for B is:

B = β + γb.

The estimate for B is derived by substitution of the estimated values of b, g and
b as derived from the two regressions that are combined in DR. Suppose that we
denote these estimates, indicated by a hat, by a sum of the true parameter value
and a random term:

β̂ = β + εβ,

γ̂ = γ + εγ,

b̂ = b + εb.

These expressions are substituted in the expression for B. All products of e’s are
assumed to be negligible compared with the linear terms and omitted. Thus, we
get the following approximation:

B̂ = (β + εβ) + (γ + εγ)(b + εb),

≈ β + γb + εβ + γεb + bεγ,

≈ B + εβ + γεb + bεγ.

The variance of the expression on the right hand side is:

V ar(B̂) = V ar(β̂) + γ2V ar(b̂) + b2V ar(γ̂) + 2bCov(β̂, γ̂).
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Estimators for constants and coefficients from the two separate regressions in
DR are uncorrelated, e.g. Cov(εβ, εb) = Cov(β̂, b̂) = 0. Estimated values for
the variances and covariances can be obtained from the regression output of
the separate regressions. Taking the square root we get the estimated value for
the standard error of B̂ . In the program, variances and covariances are saved
in matrices and the expressions for the standard errors are derived by matrix
manipulation. The covariance matrices of the two regressions are placed in a block
diagonal matrix (called ”W” in the program). This matrix is pre multiplied by a
matrix (called ”work” in the program), and post multiplied by the transpose of
that same matrix. The last matrix (”work”) takes care that the relevant variance
and covariance terms get the proper coefficients. Of course it is also possible
to extract the relevant terms and program the expressions for the se’s directly,
without use of matrix manipulation.

In appendix B, the GenStat program is reproduced. Comments in the pro-
gram are between quotes (””) and highlighted (). The annotated output, including
the data, follows immediately afterwards.

9.3.2 Surrogate predictor regression

Preliminaries

As far as we know, the double-sampling methods that are presented in chapter
4 are not currently implemented in any software. Therefore, the illustrations we
propose are based on home made programs that only work (when they work) in
the R/Splus programming environment. These functions are given in appendix
B.

The illustrative example is based data extracted from the data set introduced
in section 9.2.1. In this example, the response variable remains the lean meat
percentage and instrumental predictors are a fat layer (F03) and a meat layer
(M11). Our aim is to derive a prediction formula but it is asked to the reader to
forget for a while that the whole data set contains common measurements of the
response and the instrumental predictors.

Suppose that a first prediction equation of the lean meat percentage by 4
reference predictors is available thanks to an experiment involving nr =50 car-
casses (for our purpose, these carcasses will be the first 50 carcasses in the data
set). These reference predictors are supposed to be fat layers (F02, F11 and F14)
a meat layer (M13). It is rather clear here that the reference predictors forms
a complete set of predictors in the sense that the instrumental predictors have
no additional predictive ability once the reference predictors are observed. As it
was mentioned in section 4.3, this property makes is valid the use of the present
method.

Yr and Zr will denote the matrix containing respectively the values of the
response and the reference predictors on the reference sample:
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Yr <- Y[1:50]

Zr <- X[1:50,c("F02","F11","F14","M13")]

According to the previous examination of the dimensionality of the instrumental
predictors in section 9.2, PLS with 2 components is used here to establish the
reference prediction formula. The slope coefficients are given by:

> ref.pls <- pls(Zr, Yr)

> sloperef <- ref.pls$training$B[, , 2]

> offsetref <- mean(Yr) - sum(sloperef * apply(Zr, 2, mean))

> coefref <- c(offsetref, sloperef)

> round(coefref, 2)

[1] 65.63 -0.25 -0.41 -0.45 0.18

Deriving a prediction formula for the lean meat percentage by the instrumen-
tal predictors will now be achieved through a new experiment consisting only in
common measurements of the reference predictors and the instrumental predic-
tors. The first question that has to be addressed is the sample size in this scaling
experiment.

Sampling scheme

Some inputs are of course needed to find a sampling scheme that can ensure
that the EC-requirements are satisfied. More precisely, some prior information
on the variance-covariance of the instrumental and reference predictors is needed.
This information can either be obtained by some knowledge from past experi-
ments or from a few scaling experiments. Here, it is chosen to get informations
through 50 scaling experiments (say the carcasses numbered 51 to 100 in the data
set):

> Zs <- X[51:100, c("F02", "F11", "F14", "M13")]

> Xs <- X[51:100, c("F03", "M11")]

> varzx <- var(cbind(Zs, Xs))

Up to now, the R/Splus object varzx contains the variances and covariances of
both the reference and the instrumental predictors.

Finally, an estimation of the residual standard deviation of the reference pre-
diction equation is necessary. Although the use of PLS does not enable a proper
calculation, it will be supposed that the reference residual standard deviation
equals about 1.7.

The function optisamp.spr have been written to find the minimum sample
size for the scaling experiment that will provide estimators as efficient as those
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that would have been obtained from OLS on a sample of 120 units. The argu-
ments of this function are the target sample size n (n = 120 according to the
EC-requirements), the reference sample size nr (here nr = 50), the variance-
covariance sigmazx of both the reference and the instrumental predictors, the
reference residual standard deviation rsdref and the slope coefficients in the
reference prediction equation sloperef:

> optisamp.spr(n = 120, nr = 50, sigmazx = varzx, rsdref = 1.7,

sloperef = ref.pls$training$B[, , 2])

[1] 222

It is therefore suggested to run 172 new scaling experiments. It will be supposed
that the scaling sample contains the carcasses numbered 51 to 272:

Zs <- as.matrix(X[51:272,c("F02","F11","F14","M13")])

Xs <- as.matrix(X[51:272,c("F03","M11")])

Suppose just for the illustrative purpose that the cost for a single reference dis-
section is 100 and that the cost for a scaling experiment is only 20. The global
cost for such an experiment then equals 50*100+222*20=9440, or equivalently a
reduction of approximately 22 % relative to the required 120 reference dissections.

Creating the prediction formula

The home made function spr, which arguments are the measurements of the
instrumental predictors Xs and the reference predictors Zs on the scaling sample
and the coefficients coefref of the reference prediction equation, can be used to
derive the prediction formula of the lean meat percentage by the instrumental
predictors:

> spr(Xs, Zs, coefref)

[,1]

60.1831859

F03 -0.7232963

M11 0.1984338

Although it does not validate the present method at all, it can be argued that
the estimated coefficients would not have been very different if OLS could have
been performed on the whole data set:

> ls.print(lsfit(X[, c("F03", "M11")], Y))

Residual Standard Error = 2.7348, Multiple R-Square = 0.4251

N = 344, F-statistic = 126.0704 on 2 and 341 df, p-value = 0
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coef std.err t.stat p.value

Intercept 59.6111 1.4674 40.6245 0

F03 -0.7188 0.0493 -14.5796 0

M11 0.2197 0.0260 8.4548 0

Validation

First, let us derive the RMSEP for the reference prediction equation:

> rmsep.ref <- pls(Zr, Yr, validation = "CV",

grpsize = 1)$training$RMS[2, 1]

> rmsep.ref

2 LV’s

1.902015

Now the home made function rmsep.spr gives the RMSEP for the prediction
formula:

> rmsep.spr(Xs, Zs, sloperef = ref.pls$training$B[, , 2],

rmsepref = rmsep.ref)

[1] 2.997035

At both phase of the sampling scheme, full cross-validation have been used to
derive the RMSEPs. According to the content of section 4.3, the resulting RM-
SEP is obtained by a combination of the intermediate RMSEPs derived on the
reference sample and the scaling sample.
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Prospects

By Bas Engel

10.1 Non-linear regression

In classical non-linear regression, it is assumed that

yi = f(xi; a, b, c) + εi,

where f(x; a, b, c) is a function of prediction variable x and some unknown coef-
ficients, say a, b and c, which have to be estimated from the data. The mutually
independent error terms εi are assumed to have equal variance σ2. Function f
is assumed to be non-linear in at least one of the variables a, b or c. Obviously,
LR, where f(x; a, b) = a + b ∗ x, is a special case, without non-linear coefficients.

Estimation of a, b and c proceeds analogous to LR by the method of least
squares. Estimates A, B and C minimise the sum of squares:

n∑
i=1

[yi − f(xi; a, b, c)]2 .

The minimum value offers an estimate for σ2:

s2 =
n∑

i=1

[yi − f(xi; A, B, C)]2 /d.

Again, d are the degrees of freedom and equal to the sample size n reduced by
the number p of unknowns to be estimated in the formula: d = n − p. With
coefficients a, b and c: p = 3.

Minimisation of the sum of squares is more complicated than in LR and
usually involves some iterative numerical procedure. Least squares estimates A,
B and C will be biased estimators for a, b and c. Likewise, s2 will be a biased
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estimator for σ2. Statistical inference in a non-linear models is mostly based
on large sample theory, even under assumption of normality of error terms εi

few exact small sample results are available for statistical inference. There is no
guarantee that the large sample approximations will yield proper results for small
sample sizes. For a sample size of n = 120, estimators may be expected to be
well behaved, e.g. they will be nearly unbiased and they will offer a reasonable
impression of a, b, c and σ2. By way of an RMSE, the estimated residual standard
error s may be evaluated. When inclusion of non-linear terms markedly improves
results obtained by LR, it seems reasonable to extend the minimum sample size
of 120 carcasses for LR to classical non-linear regression as well. There is quite
some literature devoted to non-linear regression; we just mention Gallant (1975,
1987). There is ample software in most of the larger statistical packages. The
approach of Engel & Walstra (1993) is actually based on a very specific non-linear
model. For this particular problem a combination of least squares and non-linear
regression, i.e. logistic regression, was used.

10.2 Variance functions

Variance functions have not been used yet in carcass grading. Therefore we will
only supply a few, rather technical, details. When the variance of the error terms
is not constant, quite often because it increases with the mean, a logarithmic
transformation may stabilise the variance. After logarithmic transformation, a
non-linear model may be more appropriate. Note that either with a linear or a
non-linear model, after transformation, s2 is not a proper substitute for the RMSE
anymore, because it refers to observations log(y) and not to the original observa-
tions y. Assuming normality after transformation, the original observations are
following a lognormal distribution with the following relationship between the
residual variance V ar(yi) and the mean E(yi) (Mood et al., 1974, p117):

V ar(yi) =
{
exp(σ2)− 1

}
E(yi)

2.

E(yi) will either look like (linear model after transformation):

exp(a + bxi + σ2/2)

or (non-linear model after transformation):

exp
[
f(xi; a, b, c) + σ2/2

]
.

Note that back-transformation includes the term σ2/2 in the exponential.
Alternatively, we may employ a so called generalized linear model (GLM) (Mc-

Cullagh and Nelder, 1989), specifying a logarithmic link function and a variance
function of the form:

V ar(yi) = φE(yi)
2.
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Under the assumption of normality of log(y) we have φ = exp(σ2) − 1, and
estimation may be performed by least squares on the log-transformed data. Al-
ternatively, an estimation procedure called maximum quasi-likelihood (Nelder
and Wedderburn, 1972; McCullagh and Nelder, 1989) may be applied to the
original data. Maximum quasi-likelihood avoids the need for further distribu-
tional assumptions, e.g. no assumption of a (log) normal distribution is needed.
Maximum quasi-likelihood is a natural extension of the method of least squares
for variables y where the variance is a multiple of a known function of the mean
(McCullagh, 1983). Standard software for GLMs may be employed to derive
maximum quasi-likelihood estimates.

Note that it may sometimes be appealing to apply a transformation to obtain
a linear model. For instance when the theoretical mean is equal to:

E(yi) = b exp(−cxi),

it follows that

log [E(yi)] = log(b)− cxi.

The latter expression is linear in log(b) and c. Obviously, when the variance
was constant before transformation, it will not be constant after transformation.
In that case, a GLM with a logarithmic link function and a constant variance
function could be employed. This is a special case of the classical non-linear
regression model with all the non-linearity concentrated in the logarithmic link
function.

Both for least squares after log-transformation and maximum quasi-likelihood
with a (quadratic) variance function, it is not immediately apparent what a suit-
able substitute for the RMSE should be. The problem is that the RMSE will
depend on the prediction variable x through the mean E(y). Evaluation of the
maximum RMSE over a suitable range of x-values seems to be an acceptable
approach.
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Chapter 11

Reporting to the Commission -
results of the trial

By Gérard Daumas

The present EU regulation lays out:
“Part two of the protocol should give a detailed description of the results of

the dissection trial and include in particular:

1. a presentation of the statistical methods used in relation to the sampling
method chosen,

2. the equation which will be introduced or amended,

3. a numerical and a graphic description of the results,

4. a description of the new apparatus,

5. the weight limit of the pigs for which the new method may be used and any
other limitation in relation to the practical use of the method.”

These items have not been specifically discussed. Nevertheless, one can look
for the following items at the corresponding sections:

• Item 1: see chapters 2 and 4.

• Item 3: see chapters 8 and 9.
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Daumas, G (1994). La double régression sous SAS. Lettre d’information SAS
ACTA, 23.
Daumas, G. (2003). A description of the European slaughterpig populations
and their classification. EUPIGCLASS report, 42 p.
Daumas, G., Causeur, D., Dhorne, T., Schollhammer, E. (1998). The
new pig carcass grading methods in France. Proceedings 44th ICoMST, Barcelona
(Spain), C-64, 948-949.
Daumas, G. and Dhorne, T. (1995). French protocol for updating of pig
carcasses classification methods in 1996 - 1st part - EC Working document.
Daumas, G. and Dhorne, T. (1997). The lean meat content of pig carcasses:
determination and estimation. French Swine Research Days, 29, 171-180.
Daumas, G. and Dhorne, T. (1998). Pig carcass grading in European Union.
Proceedings of 44th ICoMST, Barcelona, Spain. C-63, 946-947.
Daumas, G., Dhorne, T., Gispert, M. (1994). Accounting for the sex effect
on prediction of pig carcass lean meat percentage in the Community. Proc. 40th
ICoMST, La Haye (The Netherlands), S III. 11, 9 pp.
Denham, M.C. (1995) Implementing Partial Least Squares. Statistics and
Computing 5, 191-202.
Dhorne, T.J. (2000). Contribution to EUPIGCLASS workshop, Lelystad, The
Netherlands.

119



Chapter A. References

Draper, N.R., Smith, H. (1981). Applied regression analysis. 2nd edition.
New York: John Wiley.
Engel, B. (1987). Increasing precision or reducing expense in regression exper-
iments by using information from a concomitant variable. GLW research report
LWA-87-1, Wageningen, The Netherlands.
Engel, B. and Walstra, P. (1991a) Increasing precision or reducing expense in
regression experiments by using information from a concomitant variable. Bio-
metrics 47 1011-1023.
Engel, B and Walstra, P. (1991b) A simple method to increase precision or
reduce expense in regression experiments to predict the proportion of lean meat
of carcasses. Animal production 53 353-359.
Engel, B., Walstra, P. (1993). Accounting for subpopulations in prediction of
the proportion of lean meat of pig carcasses. Animal Production 57: 147-152.
Engel, B., Buist, W.G., Walstra, P., Olsen, E., Daumas, G. (2003a).
Accuracy of prediction of percentage lean meat and authorization of carcass mea-
surement instruments: adverse effects of incorrect sampling of carcasses in pig
classification. Animal Science 76: 199-209.
Engel, B., Buist, W.G., Font I Furnols, M., Lambooij, E. (2003b). Sub-
populations and accuracy of prediction in pig carcass classification. Animal Sci-
ence, in press.
European Community (1994a) EC regulation No. 3127/94, amending reg-
ulation (EC) No 2967/85 laying down detailed rules for the application of the
community scale for grading pig carcasses.
European Community (1994b) Commission Decision amendment to the deci-
sion authorizing methods for grading pig carcasses in Spain (94/337/EEC).
Feinberg, M. (1995). Basics of interlaboratory studies: the trends in the new
ISO 5725 standard edition. Trends in analytical chemistry, vol. 14, no.9, Paris.
Font i Furnols, M. (2002). Contribution to EUPIGCLASS meeting, Gent,
Belgium.
Gallant, A.R. (1975). Nonlinear regression. The American Statistician 29:
73-81.
Gallant, A.R. (1987). Nonlinear Statistical Models. New York: John Wiley.
Gispert, M., Dhorne, T., Diestre A., Daumas, G., (1996). Efecto del sexo
en la predicción del contenido en magro de la canal porcina en España, Francia
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Technical details

B.1 SAS Macros for PLS and PCR

/definition of the data/

%global xvars yvars ;

%let xvars= P_WEIGHT P_LENGTH P_SHOULDER P_PELVIC F02 F03 F11 M11 F12 M12 F13 M13 F14 F16;

%let yvars=lmp;

/macro to calculate the different RMSEP with leave one out/

Variables required to be defined: dades=name of the data set

(without missing values)

%macro rmsep(dades);

data regre; set &dades(keep= &xvars &yvars );

call symput(’num_x’,_N_);run;

%do i=1 %to &num_x;

data regres; set regre; if _N_=&i then &yvars=.; proc reg

noprint; model &yvars=&xvars/p; output out=tt&i

p=yhat;

run;

%end;

%do i=1 %to &num_x;

data rr&i; merge tt&i &dades; if _N_=&i;

ysqu=(&yvars-yhat)*(&yvars-yhat); run; data kk&i; set rr&i

(keep=ysqu); run;

%end;

%do i=1 %to 1;

data mitja&i; set kk&i; run;

%end;

%do i=2 %to &num_x;

data mitja&i;

%let j=%eval(&i-1);

set kk&i mitja&j; run;

%end;

%do i=&num_x %to &num_x;

proc means data=mitja&i noprint; output out=mitjana; run;

%end;

data result; set mitjana; if _STAT_=’MEAN’ ; rmsep=(YSQU)**0.5;

proc print noobs; var rmsep; run;

%mend rmsep;

/definition of the variables/

%global xvars yvars ypred;

%let xvars= P_WEIGHT P_LENGTH P_SHOULD P_PELVIC F02 F03 F11 M11 F12 M12 F13 M13 F14 F16;

%let yvars= lmp;
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%let predicted=yhat1;

/macro to calculate RMSEP for PLS/ Variables required to be

defined:

dades= name of the data set and should not contain missing values

sel_lv= number of factors to take into consideration

%macro rmsepls(dades,sel_lv=&lv);

data pls1; set &dades(keep= &xvars &yvars );

call symput(’num_x’,_N_);run;

%do i=1 %to &num_x;

data pls2; set pls1; if _N_=&i then &yvars=.; proc pls method=pls

lv=&sel_lv noprint ; model &yvars=&xvars; output out=tt&i

predicted=yhat1 ; run;

%end;

%do i=1 %to &num_x;

data rr&i; merge tt&i &dades ; if _N_=&i;

ysqu=(&yvars-yhat1)*(&yvars-yhat1); run; data kk&i; set rr&i

(keep=ysqu); run;

%end;

%do i=1 %to 1;

data mitja&i; set kk&i; run;

%end;

%do i=2 %to &num_x;

data mitja&i;

%let j=%eval(&i-1);

set kk&i mitja&j; run;

%end;

%do i=&num_x %to &num_x;

proc means data=mitja&i noprint; output out=mitjana; run;

%end;

data result; set mitjana; if _STAT_=’MEAN’ ; rmsep=(YSQU)**0.5;

proc print noobs; var rmsep; run;

%mend rmsepls;

/definition of the variables/

%global xvars yvars ypred;

%let xvars= P_WEIGHT P_LENGTH P_SHOULD P_PELVIC F02 F03 F11 M11 F12 M12 F13 M13 F14 F16;

%let yvars= lmp;

%let predicted=yhat1;

/macro to calculate RMSEP for PCR/ Variables required to be

defined:

dades= name of the data set and should not contain missing values

sel_lv= number of factors to take into consideration

%macro rmsepcr(dades,sel_lv=&lv);

data pcr1; set &dades(keep= &xvars &yvars );

call symput(’num_x’,_N_);run;

%do i=1 %to &num_x;

data pcr2; set pcr1; if _N_=&i then &yvars=.; proc pls method=pcr

lv=&sel_lv noprint ; model &yvars=&xvars; output out=tt&i

predicted=yhat1 ; run;

%end;

%do i=1 %to &num_x;

data rr&i; merge tt&i &dades ; if _N_=&i;

ysqu=(&yvars-yhat1)*(&yvars-yhat1); run; data kk&i; set rr&i

(keep=ysqu); run;

%end;

%do i=1 %to 1;

data mitja&i; set kk&i; run;

%end;

%do i=2 %to &num_x;

data mitja&i;

%let j=%eval(&i-1);
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set kk&i mitja&j; run;

%end;

%do i=&num_x %to &num_x;

proc means data=mitja&i noprint; output out=mitjana; run;

%end;

data result; set mitjana; if _STAT_=’MEAN’ ; rmsep=(YSQU)**0.5;

proc print noobs; var rmsep; run;

%mend rmsepcr;

B.2 Genstat program for double-regression

The program

"

Example of double-regression (DR) with simulated data.

Program in GenStat (2000). The Guide to genStat. VSNInt.Oxford.

Based on Engel & Walstra (1991a,b).

Notation:

y = EC reference lean meat percentage

ystar = lean meat percentage obtained by a national method

x = prediction variable, e.g. a fat depth measurement

a, b, v1 are the constant, coefficient and squared rsd in the regression

of ystar on x

alpha, beta, gamma, v2 are the constant, coefficients and squared rsd in

the regression of y on x and ystar

A, B, RSD are the constant, coefficient and rsd of the final

prediction formula

rho is the partial correlation between y and ystar conditional upon x

Estimated values are denoted by ahat, bhat, etc. except estimated values

for v1, v2 and trueRSD that are denoted RSD1, RSD2 and RSD.

Here, sample sizes are N = 200 (total sample) and n = 50 (sub sample).

"

scal start,v1,v2,a,b,alpha,beta,gamma

"true parameter values (fictional)"

calc a = 70

calc b = -0.4

calc alpha = -12.0

calc beta = -0.1

calc gamma = 1.1

calc v1 = 3.2

calc v2 = 0.7

calc trueRSD = sqrt( v2 + gamma*gamma*v1)

calc truerho = gamma* sqrt(v1) / trueRSD

calc trueA = alpha+gamma*a calc trueB = beta +gamma*b

"generation of data"

"subset indicates sub sample membership"

"here all samples are random"

vari[nval=200] ystar,x,y
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vari[nval=200] subset;val=!(50(1), 150(0))

vari[nval=200] tel; val=!(1...200)

calc start = urand(347883)

calc e =urand(0;200)

calc x = ned(e) * sqrt(12.5) + 16.4

calc del = urand(0;200)

calc del = ned(del)*sqrt(v1)

calc ystar = a + b * x + del

calc eps = urand(0;200)

calc eps = ned(eps)*sqrt(v2)

calc y = alpha + beta * x + gamma * ystar + eps

calc y = y / subset

prin tel, x, ystar, y; f=4(8); d=0, 3(2)

"first regression, ystar on x"

model ystar

fit x

rkeep ystar; estimates=coef1;vcov=cov1;deviance=SS1;df=df1

"second regression, y on x and ystar"

model y

fit x + ystar

rkeep y; estimates=coef2;vcov=cov2;deviance=SS2;df=df2

"combination of regressions"

calc ahat = coef1$[1]

calc bhat = coef1$[2]

calc alphahat = coef2$[1]

calc betahat = coef2$[2]

calc gammahat = coef2$[3]

calc RSD1 = sqrt(SS1/df1)

calc RSD2 = sqrt(SS2/df2)

calc A = alphahat + gammahat * a

calc B = betahat + gammahat * b

calc RSD = sqrt(RSD2*RSD2+RSD1*RSD1*gammahat*gammahat)

calc rhohat = gammahat*RSD1/RSD

"standard errors of estimates"

matrix[rows=2;col=5] work; val=!(gammahat,0,1,0,a,0,gammahat,0,1,b)

symmetricmatrix [rows=2] COVAR

diag[rows=2] se

matrix[rows=5;col=5] W

matrix[rows=2;col=2] c1

matrix[rows=3;col=3] c2

calc c1 = cov1

calc c2 = cov2

calc W = 0

equate[newf=!((2,-3)2, (-2,3)3)] !P(c1,c2); W

calc COVAR = prod(work;rtprod(W;work))

calc se = COVAR

calc se = sqrt(se)

calc seA = se$[1] calc seB = se$[2]

"calculation of approximate degrees of freedom"

calc df = RSD**4
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calc df=df/((RSD2**4)/47+(gammahat**4)*(RSD1**4)/(198)+2*(RSD1**4)*gammahat*gammahat*cov2$[3;3])

"true and estimated parameters, se’s, approximate degrees of freedom"

prin trueA, A, seA, trueB, B, seB, trueRSD, RSD, df,truerho,rhohat; f=8(8); d= 9(2)

"estimated efficiency relative to linear regression (LR) with 120 dissected carcasses"

calc Efficiency = (50/120)/(1-0.75*rhohat*rhohat)

"sample size of LR with equal efficiency"

calc nLR = 50/(1-0.75*rhohat*rhohat)

print Efficiency; d=2

print nLR;d=2

stop

The output

The first part of the output reproduces the program and is omitted. We start
by reproducing the data.

67 prin tel, x, ystar, y; f=4(8); d=0, 3(2)

tel x ystar y

1 17.23 62.14 55.55

2 21.93 59.90 50.58

3 12.54 66.55 60.14

4 20.29 63.16 55.93

.........................

.........................

45 13.47 67.09 59.80

46 18.72 64.89 57.48

47 15.09 63.02 56.35

48 6.73 66.17 61.53

49 17.56 60.10 52.87

50 15.45 61.06 54.24

51 7.74 66.63 *

52 21.66 60.20 *

53 13.15 63.55 *

54 13.80 66.00 *

.........................

.........................

195 12.47 65.71 *

196 20.97 60.16 *

197 12.40 62.30 *

198 13.86 62.52 *

199 20.98 62.56 *

200 11.16 64.58 *

68

69 "first regression, ystar on x"

70

71 model ystar

72 fit x

72..............................................................................
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***** Regression Analysis *****

Response variate: ystar

Fitted terms: Constant, x

*** Summary of analysis ***

d.f. s.s. m.s. v.r.

Regression 1 331.8 331.842 108.83

Residual 198 603.7 3.049

Total 199 935.6 4.701

Percentage variance accounted for 35.1

Standard error of observations is estimated to be 1.75

* MESSAGE: The following units have high leverage:

Unit Response Leverage

28 61.15 0.035

39 67.39 0.037

48 66.17 0.048

51 66.63 0.040

124 64.34 0.032

128 65.28 0.029

*** Estimates of parameters ***

estimate s.e. t(198)

Constant 70.010 0.626 111.86

x -0.3872 0.0371 -10.43

73 rkeep ystar; estimates=coef1;vcov=cov1;deviance=SS1;df=df1

74

75 "second regression, y on x and ystar"

76

77 model y

78 fit x + ystar

78..............................................................................

***** Regression Analysis *****

Response variate: y

Fitted terms: Constant + x + ystar

*** Summary of analysis ***

d.f. s.s. m.s. v.r.

Regression 2 453.54 226.7688 275.74

Residual 47 38.65 0.8224

Total 49 492.19 10.0447

Percentage variance accounted for 91.8

Standard error of observations is estimated to be 0.907

* MESSAGE: The following units have large standardized residuals:

Unit Response Residual

28 55.584 2.81

* MESSAGE: The following units have high leverage:

Unit Response Leverage

14 48.547 0.160

48 61.534 0.163
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*** Estimates of parameters ***

estimate s.e. t(47)

Constant -16.55 4.65 -3.56

x -0.0545 0.0436 -1.25

ystar 1.1627 0.0656 17.73

79 rkeep y; estimates=coef2;vcov=cov2;deviance=SS2;df=df2

80

81 "combination of regressions"

82

83 calc ahat = coef1$[1]

84 calc bhat = coef1$[2]

85 calc alphahat = coef2$[1]

86 calc betahat = coef2$[2]

87 calc gammahat = coef2$[3]

88 calc RSD1 = sqrt(SS1/df1)

89 calc RSD2 = sqrt(SS2/df2)

90

91 calc A = alphahat + gammahat * a

92 calc B = betahat + gammahat * b

93 calc RSD = sqrt(RSD2*RSD2+RSD1*RSD1*gammahat*gammahat)

94 calc rhohat = gammahat*RSD1/RSD

95

96 "standard errors of estimates"

97

98 matrix[rows=2;col=5] work; val=!(gammahat,0,1,0,a,0,gammahat,0,1,b)

99 symmetricmatrix [rows=2] COVAR

100 diag[rows=2] se

101 matrix[rows=5;col=5] W

102 matrix[rows=2;col=2] c1

103 matrix[rows=3;col=3] c2

104 calc c1 = cov1

105 calc c2 = cov2

106 calc W = 0

107 equate[newf=!((2,-3)2, (-2,3)3)] !P(c1,c2); W

108 calc COVAR = prod(work;rtprod(W;work))

109 calc se = COVAR

110 calc se = sqrt(se)

111 calc seA = se$[1]

112 calc seB = se$[2]

113

114 "calculation of approximate degrees of freedom"

115

116 calc df = RSD**4

117 calc df = df/((RSD2**4)/47+(gammahat**4)*(RSD1**4)/

118 (198)+2*(RSD1**4)*gammahat*gammahat*cov2$[3;3])

118

119 "true and estimated parameters, se’s, approximate degrees of freedom"

120

121 prin trueA,A,seA,trueB,B,seB,trueRSD,RSD,df,truerho,rhohat; f=8(8); d= 9(2)

trueA A seA trueB B seB trueRSD RSD df truerho rhohat

65.00 64.84 0.93 -0.54 -0.52 0.06 2.14 2.22 117.39 0.92 0.91

122

123 "estimated efficiency relative to linear regression (LR)

124 with 120 dissected carcasses"

124

125 calc Efficiency = (50/120)/(1-0.75*rhohat*rhohat)

126

127 "sample size of LR with equal efficiency"
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128

129 calc nLR = 50/(1-0.75*rhohat*rhohat)

130

131 prin Efficiency; d=2

Efficiency

1.11

132 prin nLR;d=2

nLR

133.42

133

134 stop

B.3 Programs in R/Splus to select the best sub-

set of predictors according to the RMSEP

fact <- function(k) gamma(k+1)

binom <- function(n,p) round(fact(n)/(fact(p)*fact(n-p)))

suivant <- function(s,nbvar) {

k <- length(s)

if (k==0) res <- as.list(1:nbvar)

if (k==nbvar) res <- NULL

if ((k!=0)&(k!=nbvar)&(s[k]==nbvar)) res <- NULL

if ((k!=0)&(k!=nbvar)&(s[k]!=nbvar)) res <- as.list(

as.data.frame(t(cbind(matrix(rep(s,nbvar-s[k]),nrow=nbvar-s[k],ncol=k,byrow=T),

(s[k]+1):nbvar))))

}

stadesuivant <- function(s,nbvar) {

k <- length(s[[1]])

res <- NULL

for (j in 1:length(s))

if (nbvar-s[[j]][k]>0) res <- rbind(res,cbind(matrix(rep(s[[j]],nbvar-s[[j]][k]),

nrow=nbvar-s[[j]][k],ncol=k,byrow=T),(s[[j]][k]+1):nbvar))

as.list(as.data.frame(t(res)))

}

arrangements <- function(nbvar) {

res <- vector("list",2^(nbvar)-1)

stade <- as.list(1:nbvar)

res[1:nbvar] <- stade

long <- nbvar

for (i in 2:nbvar) {

li <- binom(nbvar,i)

stade <- stadesuivant(stade,nbvar)

res[(long+1):(long+li)] <- stade

long <- long+li

}

res

}

rmsep.ols <- function(X,Y) {
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res <- lsfit(X,Y)$res

sqrt(mean(res^2/(1-hat(X))^2))

}

rmsepsub.ols <- function(subset,predictors,response) {

rmsep.ols(predictors[,subset],response)

}

bestrmsep.ols <- function(X,Y) {

nbvar <- ncol(X)

arr <- arrangements(nbvar)

rmsep.all <- unlist(lapply(arr,rmsep.sub,predictors=X,response=Y))

arr.length <- as.factor(unlist(lapply(arr,length)))

bests <- tapply(rmsep.all,arr.length,order)

subsets <- vector("list",length=nbvar)

labels <- vector("list",length=nbvar)

minrmsep <- tapply(rmsep.all,arr.length,min)

for (i in 1:nbvar) {

subsets[i] <- arr[arr.length==as.character(i)][unlist(bests[i])[1]]

labels[[i]] <- dimnames(X)[[2]][unlist(subsets[i])]

}

names(subsets) <- 1:nbvar

names(labels) <- 1:nbvar

list(subsets=subsets,labels=unlist(lapply(labels,paste,collapse=",")),

minrmsep=minrmsep)

}

B.4 Programs in R/Splus for double-sampling

schemes

optisamp.spr <- function(n,nr,sigmazx,rsdref,sloperef) {

if (is.vector(sloperef))

sloperef <- matrix(sloperef, ncol=1)

nbz <- nrow(sloperef)

nbx <- nrow(sigmazx)-nbz

sigmaz <- sigmazx[1:nbz,1:nbz]

sigmax <- sigmazx[(nbz+1):(nbz+nbx),(nbz+1):(nbz+nbx)]

covzx <- sigmazx[(nbz+1):(nbz+nbx),1:nbz]

sigmaz.x <- sigmaz-t(covzx)%*%solve(sigmax)%*%covzx

tau <- max(eigen(covzx%*%ginverse(sigmaz)%*%t(covzx)%*%ginverse(sigmax),sym=T)$values)

rsd <- sqrt(rsdref^2+t(sloperef)%*%sigmaz.x%*%sloperef)

rho <- sqrt(1-(rsdref/rsd)^2)

h <- nr/n

f <- (h-(1-rho^2)*tau)/rho^2

as.integer(round(nr/f)+1)

}

spr <- function(Xs,Zs,coefref) {

solve(t(cbind(1,Xs))%*%cbind(1,Xs))%*%t(cbind(1,Xs))%*%cbind(1,Zs)%*%coefref

}

msep.ols <- function(X,Z) {

if (is.vector(Z)) Z <- matrix(Z,ncol=1)

res <- matrix(lsfit(X,Z)$res,nrow=nrow(Z),ncol=ncol(Z))

wghts <- matrix(rep(1/(1-hat(X)),ncol(res)),nrow=nrow(res),ncol=ncol(res))

wres <- res*wghts

(t(wres)%*%wres)/nrow(res) }
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B.5 Logistic regression for dealing with sub-po-

pulations
By Bas Engel

We will consider an example with two sub-populations, where sampling scheme III consists of one separate
sub-sample for each sub-population that is considered. Generalization to several sub-samples is straightforward.

In 1990, throughout the EC, a dissection trial was carried out as a first step towards harmonisation of
methods for pig classification in the EC. The proposal for the trial (EC, 1989a) specifically mentioned a possible
interest in differences between sub populations. In The Netherlands at that time there was an interest in
differences between gilts and castrated males. Separate samples were taken for the two sexes in accordance with
the sampling proposal for this EC-trial, thus ensuring sufficient accuracy for a comparison between these two
sub-populations. The instrumental carcass measurements were a fat and muscle depth measured by the Henessy
grading probe (HGP) (Walstra, 1986).

Separate formulas for gilts and castrated males were calculated and found to be significantly (P ¡ 0.05),
although not markedly, different. Due to practical limitations, it was not possible to use separate prediction
formulas for the sexes in slaughterhouses in The Netherlands. Therefore, the different formulae for the sexes
had to be combined into one overall formula. Since castrates are generally fatter than gilts, obviously the overall
formula should be closer to the formula for gilts for small fat measurements, while for large fat measurements
it should be closer to the formula for castrates. Consequently, in combining the two formulas, the sexes should
get different weights that depend on the carcass measurements.

To evaluate expressions for these weights, extra information was needed about the proportions of gilts and
castrated males in the pig population, in relation to the prediction variables as collected with the HGP. To that
end an additional large sample of 134158 carcasses was collected from data registered in Dutch slaughterhouses.
For all these carcasses gender and HGP measurements were available. No additional dissections were needed.

As was observed before, ignoring the sexes in the regression calculations would not be a statistically sound
approach. Due to the sampling scheme, in the total sample, which is a combination of the sub samples for the
two sub-populations, gilts are over-represented for the fat carcasses, while castrates are over-represented for the
lean carcasses.

Suppose that for a particular pair of observed values for backfat and muscle thickness there are K carcasses
in the underlying population with these same carcass measurements. Suppose that k of these carcasses corre-
spond to gilts and (K − k) carcasses to castrates. Let p = k/K and 1 − p = (K − k)/K be the corresponding
proportions of gilts and castrates in the population. The overall mean lean meat proportion m of the K carcasses
in the population would be the best prediction for the carcass on the basis of the HGP values observed. When
mg and mc are the means corresponding to the k gilts and (K − k) castrates respectively:

m = pmg + (1 − p)mc

The predictions from the separate formulas for gilts and castrates, say ŷg and ŷc, are estimates for the means
mg and mc and a natural choice for the overall prediction ŷ is:

ŷ = pŷg + (1 − p)ŷc

The proportions p and (1 − p) depend on the observed fat and muscle depth. For small fat measurements, p
will approach 1 and (1− p) will approach 0 and the prediction ŷ will be close to the prediction ŷg for a gilt. For
large fat measurements, p will approach 0 and (1 − p) will approach 1, and the prediction will be close to the
prediction ŷc for a castrate.

So, the weights employed to combine the separate predictions for the sexes are not constant! They are
estimates for the proportions of gilts and castrates in the population, and depend on the observes instrumental
measurements. In Engel and Walstra (1993) it is shown how expressions for these weights can be obtained from
the additional sample where both sex and objective carcass measurements are known. In Engel et al. (2003b)
the performance of the Engel & Walstra approach is compared with the use of LR ignoring the sexes. The
Engel & Walstra approach is clearly superior, but the gain depends on the size of the differences between the
populations.

For the evaluation of a suitable substitute for the RMSE we refer to the calculations in Engel and Walstra
(1993) for the 1990 EC-harmonisation trial. There are additional details about the model and the construction
of the overall prediction formula in Engel et al. (2003b).

In Engel et al. (2003b) the potential improvement of the use of separate prediction formulae for sub-
populations is investigated in a simulation study. This simulation study is based on practical data from The
Netherlands and Spain. The study shows that a marked bias may occur between sub populations. This bias
can be eliminated, and prediction accuracy can be substantially increased, when separate formulae per sub
population are used. It is likely that such improvements will have a commercial interest for producers that
specialize in certain sub populations. When the technology for implants improves in the near future, sub
populations will be recognizable automatically in the slaughter-line and the use of different prediction formulae
will become practically feasible. Additional details are provided in Engel et al. (2003b).
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